• Title/Summary/Keyword: on-site testing

Search Result 450, Processing Time 0.021 seconds

Durability and Performance Requirements in Canadian Cement and Concrete Standards (캐나다 시멘트 및 콘크리트의 내구성 및 제성능에 대한 규준)

  • Hooton, R.D.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.5-21
    • /
    • 2006
  • Traditional standards and specifications for concrete have largely been prescriptive, (or prescription-based), and can sometimes hinder innovation and in particular the use of more environmentally friendly concretes by requiring minimum cement contents and SCM replacement levels. In December 2004, the Canadian CSA A23.1-04 standard was issued which made provisions (a) for high-volume SCM concretes, (b) added new performance requirements for concrete, and (c) clearly outlined the requirements and responsibilities for use in performance-based concrete specifications. Also, in December 2003, the CSA A3000 Hydraulic Cement standard was revised. It (a) reclassified the types of cements based on performance requirements, with both Portland and blended cements meeting the same physical requirements, (b) allows the use of performance testing for assessing sulphate resistance of cementitious materials combinations, (c) includes an Annex D, which allows performance testing of new or non-traditional supplementary cementing materials. From a review of international concrete standards, it was found that one of the main concerns with performance specifications has been the lack of tests, or lack of confidence in existing tests, for judging all relevant performance concerns. Of currently used or available test methods for both fresh, hardened physical, and durability properties, it was found that although there may be no ideal testing solutions, there are a number of practical and useful tests available. Some of these were adopted in CSA A23.1-04, and it is likely that new performance tests will be added in future revisions. Other concerns with performance standards are the different perspectives on the point of testing for performance. Some concrete suppliers may prefer processes for both pre-qualifying the plant, and specific mixtures, followed only with testing only 'end-of-chute' fresh properties on-site. However, owners want to know the in-place performance of the concrete, especially with high-volume SCM concretes where placing and curing are important. Also, the contractor must be aware of, and share the responsibility for handling, constructability, curing, and scheduling issues that influence the in-place concrete properties.

  • PDF

EMTDC Model Development for Control & Protection Analysis of Co-Generation System based on On-site Characteristic Tests (현장 측정에 근거한 열병합 발전 시스템의 제어, 보호 해석용 EMTDC 모델 수립)

  • Kim, Hak-Man;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-91
    • /
    • 2006
  • Co-generation systems have been spreading rapidly over the past 10 years in Korea and most of these systems are interconnected with electric power systems. However, better control and protection models are still needed for analysis of these systems to ensure stable operation with the grid. This paper proposes improved EMTDC models for control fad protection analysis of grid-connected co-generation systems. Through on-site characteristic testing, the models were developed and the model parameters were determined. The models were applied to a field co-generation system, and analysis of control and protection was performed showing a good match to the simulation results.

Suggested Temperature Monitoring System for Distribution Transformers by Using Microcontroller Scheme

  • El-Gawad, Amal F. Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2099-2104
    • /
    • 2015
  • The paper presents a monitoring system for the cooling of distribution transformers. The suggested system is controlled by a microcontroller scheme. The system is designed to control the oil temperature. It gives a solution to improve the cooling system by adding a number of fans especially for indoor transformers that are placed in badly-ventilated rooms. Also, the paper includes an alarm system with the possibility of tripping the transformer if it is necessary. The monitoring system consists of acquisition temperature sensor, and on-site unit. The hardware and software of the on-site unit are demonstrated with sufficient illustrations. Small prototype is constructed in the laboratory. Some laboratory experiments are carried out for examining the designed circuit by using Proteus Virtual System Modeling as well as for testing the prototype monitoring system. Concerning this research point, a study is carried out to evaluate the economic feasibility. The results are recorded and associated with many recommendations that may be valuable to electrical distribution (utility) companies.

Wind-induced response and loads for the Confederation Bridge -Part II: derivation of wind loads

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.393-409
    • /
    • 2013
  • This paper uses ten years of on-site monitoring data for the Confederation Bridge to derive wind loads and investigate whether the bridge has experienced its design wind force effects since its completion in 1997. The load effects derived using loads from the on-site monitoring data are compared to the load effects derived using loads from the 1994 and 2009 wind tunnel aerodynamic model tests. The research shows, for the first time, that the aerodynamic model-based methodology originally developed in 1994 is a very accurate method for deriving wind loads for structural design. The research also confirms that the bridge has not experienced its specified (i.e., unfactored) wind force effects since it was opened to traffic in 1997, even during the most severe event that has occurred during this period.

Equipment and Worker Recognition of Construction Site with Vision Feature Detection

  • Qi, Shaowen;Shan, Jiazeng;Xu, Lei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.335-342
    • /
    • 2020
  • This article comes up with a new method which is based on the visual characteristic of the objects and machine learning technology to achieve semi-automated recognition of the personnel, machine & materials of the construction sites. Balancing the real-time performance and accuracy, using Faster RCNN (Faster Region-based Convolutional Neural Networks) with transfer learning method appears to be a rational choice. After fine-tuning an ImageNet pre-trained Faster RCNN and testing with it, the result shows that the precision ratio (mAP) has so far reached 67.62%, while the recall ratio (AR) has reached 56.23%. In other word, this recognizing method has achieved rational performance. Further inference with the video of the construction of Huoshenshan Hospital also indicates preliminary success.

Development of LiDAR Drone-based Point Cloud Data Accuracy Verification Technology (드론 LiDAR를 활용한 점군 데이터 정확도 검증 기술 개발)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1233-1241
    • /
    • 2023
  • This paper investigates the efficient application of drone LiDAR technology for acquiring precise point cloud data in construction and civil engineering. A structured workflow encompassing data acquisition, processing, and accuracy verification is introduced. Practical testing on a construction site affirms that drone LiDAR surveying yields accurate and reliable data across various applications. With a focus on accuracy and verification, the results contribute to the progression of surveying methodologies in construction and civil engineering. The findings provide valuable insights into the dynamic technological landscape of these fields, establishing a foundation for more effective and precise surveying techniques. This study underscores the transformative potential of drone LiDAR technology in shaping the future of construction and civil engineering survey practices.

Determination of Shear Strength Modification Factors in Drilled Shaft (현장타설말뚝의 전단강도 조정계수 결정법)

  • Kim, Myung-Hak;Michael W. O'Neill
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.193-200
    • /
    • 1999
  • An experimental study is described in which a 305-mm-diameter instrumented drilled shaft was installed in a moderately expansive clay soil during the dry season and monitored over a period of about 18 months. The purpose of the study was In investigate the effects of seasonal moisture changes in the soil on the shear stresses imposed on the sides of the drilled shaft and movements of the shaft head. The soil in the vicinity of the test shaft was instrumented to measure suction and ground surface movement and the relation between suction, total stress and shear strength of the soil at the test site was determined through laboratory triaxial compression testing. Daily rainfall and temperatures were also monitored at the test site, the National Geotechnical Experimentation Site at the University of Houston, where control on surface grading and vegetation existed. Over the course of the study induced unit side shear values of up to 54 kPa were measured in the test shaft. A simple computational model was developed that related observed suction changes to unit side shear induced by the expansion of the soil through the use of the laboratory suction-total stress-shear strength relation.

  • PDF

Evaluation of Industrial Hygiene Laboratories by on-Site Investigation for Revised Quality Control System (개정된 정도관리제도를 적용한 작업환경측정기관의 실험실 현장 평가)

  • Shin, Jung-Ah;Yi, Gwang-Yong;Park, Seung-Hyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.243-249
    • /
    • 2013
  • Objectives: This study assessed the status of domestic industrial hygiene laboratories using data from on-site investigation for revision of quality control systems in 2012-2013. Methods: The target laboratories were 60 industrial hygiene laboratories chosen by random selection and nationwide distribution which had participated in on-site investigations for revision of quality control systems from March 2012 to August 2013. The investigation was performed on-site following standard quality control procedures. The score between each group was compared using Mann-Whitney and Kruskal-Wallis tests, and the correlation between analytical career, sex, academic major of analyst and score of analytical performance was expressed as Spearman's rank correlation coefficient. Results: The assessment revealed that the items to be improved, in sequence, were effort at staff training (score 65.5), ability to calculate data (score 73.4), establishment of internal quality control guidelines (score 75.7), laboratory facilities (score 77.1), degree of understanding and skill at gas chromatography (score 77.1). Analysis performance showed a positive correlation with career of analyst (r=0.56, p<0.01). Conclusions: The practice of on-site investigation for quality control systems showed the current status of industrial hygiene laboratories in the first trial. There were many laboratories which needed improvement and development of analytical systems. This assessment can provide information for the systematic operation and improvement of facilities at each laboratory. Further practice of this investigation will lead to a proficiency testing and accreditation system for autonomous quality control as is the practice in many countries, rather than mandatory practice by legal regulation.

A Study on the Development of Smart Helmet for Forest Firefighting Crews (산불진화대원용 스마트 헬멧 개발에 관한 연구)

  • Ha, Yeon-Chul;Jin, Young-Woo;Park, Jae-Mun;Doh, Hee-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2021
  • The purpose of this study is to develop a Smart Helmet to safeguard forest firefighting crews and provide on-site information in real time. The Smart Helmet for forest firefingting crews is equipped with a camera, video/voice communication module, GPS, Bluetooth, and LTE module to promote the safety of them, and through the Smart Helmet, the site situation is is transmitted in real time, and full duplex communication is possible. As a result of testing using the Smart Helmet, the control center was able to receive on-site information and communication with on-site forest firefighting crews. Through site evaluation and user evaluation, it was confirmed that the Smart Helmet needs to be improved. The developed Smart Helmet can be used in various ways in forest disasters and forest industry.

Geotechnical parameters from pressuremeter tests for MRT Blue Line extension in Bangkok

  • Likitlersuang, Suched;Surarak, Chanaton;Wanatowski, Dariusz;Oh, Erwin;Balasubramaniam, Arumugam
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.99-118
    • /
    • 2013
  • Construction of the extension project of the Bangkok MRT Blue Line underground railway was recently started in 2011. The construction of approximately 5 km long underground tunnel and 4 deep excavations of underground station are considered to be the most important geotechnical works. The pressuremeter was selected as a high-quality in situ testing of the soil to evaluate design parameters for the project. In addition, other field and laboratory tests such as vane shear and $CK_0U$ triaxial tests were included in the investigation programme. This paper aims to present the ground conditions encountered along the MRT Blue Line extension project as well as the site investigation and interpretation techniques with particular focus on the pressuremeter tests. The results are also compared with the pressuremeter investigation from the previous Bangkok MRT project.