• Title/Summary/Keyword: on current

Search Result 53,975, Processing Time 0.075 seconds

A Busbar Current Differential Relay with a Compensating Algorithm (보상 알고리즘을 적용한 모선보호용 전류차동 계전기)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

A Busbar Current Differential Relay with a Compensating Algorithm (보상 알고리즘을 적용한 모선보호용 전류차동 계전기)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.715-722
    • /
    • 2012
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of the time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between the two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor value at the mode boundary as functions of the input voltage and the time delay. The overshoot of the peak inductor current due to the time delay results in the increase of the average output current and the reduction of the critical inductor value at the mode boundary in all converters. Experimental results are presented for the PCC buck LED driver with constant-frequency controller.

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

Help of Microcontroller on Voltage Control to Reduce Transformer Inrush Current

  • Fard, Ali Asghar Fathollahi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • At the moment of transformer energization by the supply voltage, a high current called transient inrush current, which may rise to ten times the transformer full load current, could be drawn by the primary winding. This paper discusses a microcontroller circuit with the intention of controlling and limiting the inrush current for a transformer, by the method of ramping up the supply voltage feeding to the transformer primary. Simulations and the experimental results show a significant reduction of inrush current, when the ramping up voltage is applied to the three-phase transformer load. The inrush current could be almost eliminated if the correct switching step rate is chosen.

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.

Electroplating of High Wear Resistant Rhodium using Pulse Current Plating Method (펄스도금법을 이용한 고내마모성 로듐 도금층 형성에 관한 연구)

  • Lee, Seo-Hyang;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.51-54
    • /
    • 2019
  • The electrodeposition of rhodium (Rh) on silicon substrate at different current conditions were investigated. The cracks were found at high current density during the direct current (DC) plating. The pulse current (PC) plating were applied to avoid the formation of cracks on the deposits. Off time in the pulse plating relieved the residual stress of the Rh deposits and consequently the current conditions for the crack-free Rh deposits were obtained. Optimum pulse current (PC) condition is 5:5 (on:off) for the crack-free Rh electroplating.

Characteristics for Current and Power of Induction Motor by Load Variation (부하변동에 따른 유도전동기 전류와 전력 특성)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.82-87
    • /
    • 2011
  • Induction motor is most widely used as the driving power in the industrial site. Induction motor current is composed of two parts, magnetizing current and load current. Load current uses energy what is doing the work. Load current varies with load variance but magnetizing current is constant, regardless of load variation. Magnetizing current needs for establishing the rotating magnetic field of induction motor and lags behind the voltage. Generally capacitor is used for power-factor compensation of inductive load. Self-excitation occurs when the capacitive reactive current from the capacitor is greater than the magnetizing current of the induction motor. When this occurs, excessive voltages can result on the terminals of the motor. This excessive voltage can cause insulation degradation and ultimately result in motor insulation failure. In this paper, we analyzed that how the magnetizing current and condenser current is operating at the allowable limit by the load variation. Condenser current is below allowable limit of magnetizing current but magnetizing current is above allowable limit at the lower load operation condition.

Analysis of the Principle and Operation Characteristics of an (Igc-Free ELB) Operated by an Active Component (유효성분 동작형 누전차단기(Igc Free ELB)의 원리 및 동작 특성 해석)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.456-461
    • /
    • 2010
  • This study compares the criteria of earth leakage breakers (ELB) and analyzes the characteristics of an Igc-free ELB operated by an active component which is not misoperated by capacitive current. Even for the same ELB, the earth leakage current flowing through the human body is estimated to be differ greatly depending on the power source, voltage, location and status of contact, contact time duration, etc. Earth leakage breakers are classified based on the rated voltage, rated sensing current, rated operating time etc. Mounting and demounting of the existing equipment can be performed easily since an $I_{gc}$-free ELB is manufactured with the same structure as a conventional ELB. The rated operating current of a conventional and an $I_{gc}$-free ELB is 30mA, the sensing current is 25mA and the rated non-operating current is 15mA. In the analysis of non-operating current characteristics, the rated non-operating current of 15mA was satisfied up to a 20mA charging current in the conventional ELB, but does not satisfy the rated non-operating current as it operates when the resistive leakage current is lower than 15mA for a charging current exceeding 20mA. Also, the ELB is misoperated without a resistive leakage current when the charging current exceeded 25mA. However, the newly developed $I_{gc}$-free ELB satisfied the rated non-operating current even when the charging current was 60mA. Also, in comparison to the interrupting characteristics, it was confirmed that the charging current satisfying the rated non-operating current of the $I_{gc}$-free ELB was three times higher than that of the conventional ELB.

Estimation and Measurement of the Traction return current on the electrified Gyeongbu line.

  • Kim, Y.K.;Yang, D.C.;Han, M.S.;Ryu, C.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.5-99
    • /
    • 2001
  • This study presents a simulation of the traction return current based on $2{\times}25kV$ power supply system in order to determine the impedance bond intensity of impulse type track circuit on the electrified Gyeongbu line. The results of the simulation enables us to measure the precise intensity of catenary current that returns to the substation through KTX (Korean Train Express) operated by $2{\times}25kV$ power supply system with common earth network. The combination of $2{\times}25kV$ and common earth network established on the electrified Gyeongbu line for the first time in Korea. We show that the relationships among the traction return current, earth current, and catenary current, and catenary current can be applied to this line in order to determine the optimal impedance bond intensity ...

  • PDF