• Title/Summary/Keyword: omni-directional driving

Search Result 18, Processing Time 0.028 seconds

A New Wheel Arrangement by Dynamic Modeling and Driving Performance Analysis of Omni-directional Robot (다중이동로봇의 동적 모델링 및 구동성능 분석을 통한 새로운 바퀴 배치 제안)

  • Shin, Sang Jae;Kim, Haan;Kim, Seong Han;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Omni-directional robot is a typical holonomic constraint robot that has three degrees of freedom movement in 2D plane. In this study, a new omni-directional robot whose wheels are arranged in radial directions was proposed to improve driving performance of the robot. Unlike a general omni-directional robot whose wheels were arranged in a circumferential direction, moments do not arises in the proposed robot when the robot travels in a straight line. To analyze driving performance, dynamic modeling of the omni-directional robot, which considers friction and slip, was carried out. By friction measurement experiments, the relationship between dynamic friction coefficient and relative velocity was derived. Dynamic friction coefficient according to the angle difference between robot travel direction and wheel rotation direction was also obtained. By applying these results to the dynamic model, driving performance of the robot was calculated. As a result, the proposed robot was 1.5 times faster than the general robot.

Control of an Omni-directional Electric Board using Driver Weight Shift (운전자 체중 이동을 이용한 전방향 전동 보드의 제어)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.149-155
    • /
    • 2016
  • This paper presents a control method of a mecanum wheel-based omni-directional electric board using driver weight shift. Instead of a steering device such as a joystick or a remote controller, 3 degree-of-freedom driving command for translational and rotational motion of the omni-directional electric board is generated from position of center of gravity measured from weight distribution. The weight shifting motion is not only a driving command but also an intuitive motion to overcome inertial forces. The overall control structure is presented with experimental results to prove validity of the proposed method.

Development of Omni-Directional Mobile Robot System with Rocker-Bogie Link Structure (로커-보기 링크 구조를 갖는 전방향 이동로봇 시스템개발)

  • Gang Taig-Gi;Yi Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.679-685
    • /
    • 2006
  • In this paper, development of an omni-directional mobile robot with rocker-bogie link structure is addressed. The overall mobile robot system consists of the robot mechanism with embedded control architecture, wireless communication with host graphic monitoring system, and the joy stick tole-controller. In the cluttered environment with various sizes of obstacles, the omni-directionality and the traversality are required for a mobile robot, so that the robot call go around or climb over the obstacles according to the size. The mobile robot mechanism developed in this paper has both of the omni-directionality and the traversality by 4 steerable driving wheels and the 2 additional passive omni-directional wheels linked with the rocker-bogie structure. The kinematic modeling for the mobile robot is described based on the well-known Sheth-Uicker convention and the instantaneous coordinate system.

Design of a Cleaning Robot with Omni-directional Mobility (전방향 이동이 가능한 청소로봇의 구동장치)

  • Jin, Taeseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.899-901
    • /
    • 2014
  • This paper presents design of a cleaning robot with an omni-directional mobility. The cleaning robot driven with three wheels has been developed and Those omni-wheels enable the robot to move in any directions so that lateral movement is possible. Three wheels mechanism using ball-type tire has been developed to realize a holonomic omni-diredctional robot.

  • PDF

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Development of vision-based security and service robot (영상 기반의 보안 및 서비스 로봇 개발)

  • Kim Jung-Nyun;Park Sang-Sung;Jang Dong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.308-316
    • /
    • 2004
  • As we know that there are so many restrictions controlling the autonomous robot to turn and move in an indoor space. In this research, Ive adopted the concept ‘Omni-directional wheel’ as a driving equipment, which makes it possible for the robot to move in horizontal and diagonal directions. Most of all, we eliminated the slip error problem, which can occur when the system generates power by means of slip. In order to solve this problem, we developed a ‘slip error correction algorithm’. Following this program, whenever the robot moves in any directions, it defines its course by comparing pre-programmed direction and the current moving way, which can be decided by extracted image of floor line. Additionally, this robot also provides the limited security and service function. It detects the motion of vehicle, transmits pictures to multiple users and can be moved by simple order's. In this paper, we tried to propose a practical model which can be used in an office.

  • PDF

Mechanism of Omni-directional Personal Mobility Vehicle with Diagonal Driving (대각선 주행이 가능한 전방향 개인용 이동수단용 메커니즘)

  • Park, Su-san;Im, Dea-Yeong;Cha, Hyun-Rok;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.153-159
    • /
    • 2016
  • In this paper, a mechanism of an omni-directional personal mobility which can drive diagonally is proposed. Mobility is a prerequisite involved in basic human life and activities. Personal mobility vehicle is a new mobility method which overcome the limits of automobiles. However, personal mobilities with four wheeled structure still have limitations. The proposed personal mobility vehicle can overcome the limitations of mobility because its rear wheels can be steered omni-directionally. In addition, the handicapped can drive it through a narrow road such as an alleyway or corridor and avoid obstacles on the traveling route. The proposed mechanism of personal mobility and the steering performance are tested by experiments, and the feasibility of diagonal driving is verified.

Optimal Path Planning and Control of Omni-directional Autonomous Mobile Robot (전 방향 자율이동로봇의 최적 경로탐색 및 제어)

  • Hwang, Jong-Woo;Lee, Yong-Gu;Lee, Hyunk-Wan;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.945-946
    • /
    • 2006
  • There are some difficulties to track an object with one-axis two-wheel drive method. When one-axis two-wheel drive robot wants to approach to the object, it should turn direction of the robot. At this time, direction of camera also would be changed. In this paper, we introduce omni-directional driving system that can move freely without turning the robot body, and propose the optimal approaching method.

  • PDF

Omni-Directional Motion Modeling of Concrete Finishing Trowel Robot with Circular Trowels (회전 트로웰의 원판형 가정을 통한 콘크리트 미장로봇의 전방향 운동 모델링)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.454-461
    • /
    • 1999
  • A concrete floor trowel machine, developed in the U.S in 1990's, consists of only two rotary trowels, and doesn't need any other mechanism for motion such as wheels. When the machine flattens a concrete floor with its rotary trowels, the machine can move in any direction by utilizing the unbalanced friction forces occurring between the rotary wheels and the floor when the trowels are tilted in appropriate directions. In order to automate the trowels machine, this paper proposed the self-propulsive concrete finishing trowel robot which has twin trowels. For the control of the robot, this paper discussed the following. Firstly, the dynamics model of the driving frictional force applied on each trowel from the floor is derived. Secondly, the relationship between the driving force for the robot and the control variable of the robot is derived. Finally, the basic motion of the robot are realized by using the obtained relationship. This paper figures out how the concrete floor finishing robot with tow trowels moves and will contribute to realizing it.

  • PDF

Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel (메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어)

  • Park, Young Sik;Kim, Su Jeong;Byun, Soo Kyung;Lee, Jang Myung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.