• Title/Summary/Keyword: old wood

Search Result 203, Processing Time 0.021 seconds

Effect of the Growth Period on Bioethanol Production from the Branches of Woody Crops Cultivated in Short-rotation Coppices

  • Jo, Jong-Soo;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.360-370
    • /
    • 2019
  • Woody crops cultivated in short-rotation coppices are attractive sources of lignocellulosic materials for bioethanol production, since they are some of the most abundant renewable resources. In this study, we evaluated the effects of the growth period on bioethanol production using short-rotation woody crops (Populus nigra ${\times}$ Populus maxiwiczii, Populus euramericana, Populus alba ${\times}$ Populus glandulosa, and Salix alba). The carbohydrate contents of 3-year-old and 12-year-old short-rotation woody crop branches were 62.1-68.5% and 64.0-67.1%, respectively. The chemical compositions of 3-year-old and 12-year-old short-rotation woody crop branches did not vary significantly depending upon the growth period. However, the 3-year-old short-rotation woody crop branches (glucose conversion: 26-40%) were hydrolyzed more easily than their 12-year-old counterparts (glucose conversion: 19-24%). Furthermore, following the fermentation of enzymatic hydrolysates from the crop branch samples (by Saccharomyces cerevisiae KCTC 7296) to ethanol, the ethanol concentration of short rotation coppice woody crops was found to be higher in the 3-year-old branch samples (~ 0.18 g/g dry matter) than in the 12-year-old branch samples (~ 0.14 g/g dry matter). These results suggest that immature wood (3-year-old branches) from short-rotation woody crops could be a promising feedstock for bioethanol production.

Effects of Lignocellulosic Growing Media to The Prevention of Forest Soil Erosion

  • Jo, Jong-Soo;Ha, Si Young;Jung, Ji Young;Kim, Ji-Su;Nam, Jeong Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.419-431
    • /
    • 2017
  • The forest slopes cause substantial local changes in soil properties and an increase in soil erosion after extreme rainstorms. The high soil erosion rates on forest slopes need the effective use of growing media to control the soil runoff. Therefore, we prepared six different lignocellulosic growing media such as peat, perlite, and wood meal as the base materials and carboxymethyl cellulose (CMC), glucomannan, starch, old corrugated containerboard, and computer printout as the additional materials for the prevention of simulated rainfall-induced runoff. The growing media containing old corrugated containerboard efficiently reduced the percentage of soil runoff; however, it could not completely cushion the influence of crust. The best results for plant growth, except in the leaf area, were also obtained with the growing media containing old corrugated containerboard, suggesting an interesting way of paper recycling and an economic benefit for plant or crop growth in forest slope.

A Study on the Development of Wooden Furniture used with Dyed-Glued laminated Wood (염색집성목을 이용한 목가구 개발에 관한 연구 2)

  • Kim, Dong-Kooi
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.1
    • /
    • pp.57-67
    • /
    • 2012
  • Recently, shows the possibility of providing such dyed-gathered woods after forming single boar This studyds with using cheap timbers generated by the thinning. It is helpful for master artisans are suffering from finding qualified materials. Traditionally, the master artisan has been used the beautiful grained wood from around roots of old zelkova trees and black persimmon trees. Instead, this study shows that dyed-gathered woods replace the natural grained wood and also produces a furniture made of an aggregate and a plate from walnut trees and ash trees which are a contrast to dyed-gathered woods. Dyed-gathered woods can reproduce the various colors to satisfy people's tastes, and the dignified grains that we can see in the old woods. Besides, dyed-gathered woods can replace rare materials and provide higher reliability of supplies.

  • PDF

Determinate the Number of Growth Rings Using Resistograph with Tree-Ring Chronology to Investigate Ages of Big Old Trees

  • OH, Jung-Ae;SEO, Jeong-Wook;KIM, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-708
    • /
    • 2019
  • To verify the possibility of using resistograph to estimate the age of big old living trees, we selected three Zelkova serrata and seven Pinus densiflora in Goesan. The mean diameters at breast height of Z. serrata and P. densiflora were 102 (92-116) cm and 80 (65-110) cm, respectively. The heights measured from the ground using a resistograph ranged at 1.2-4.3 m and 0.6-1.1 m for Z. serrata and P. Densiflora, respectively. The most appropriate needle speed to determine tree-ring boundaries for measuring ring width was 1500 r/min for both tree species. Alternatively, the suitable feed speeds for Z. serrata and P. densiflora were 50 cm/min and 150 cm/min, respectively. From the measured data, the mean numbers of tree rings of Z. serrata and P. densiflora were 57 (43-68) and 104 (93-124), respectively, and the mean tree-ring widths were 4.27 mm (3.18-5.09 mm) and 2.93 mm (2.32-3.34 mm), respectively. A comparison between the time series of tree-ring widths by resistograph and that from the local master chronologies tallied for the heartwood part. Finally, this study showed that resistograph can be used to estimate tree ages when a local master chronology is available.

Characterization of Burned Architectural Woods by Fire Using SEM-EDXS and Computerized Tomography

  • Lee, Hyun-Mi;Hwang, Won-Joung;Lee, Dong-Heub;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.516-522
    • /
    • 2014
  • Old architectural wood materials damaged by a fire were evaluated on the basis of wood species and scanning electron microscopy (SEM) observation of wood tissues in combination with energy dispersive X-ray spectroscopy (EDXS) analysis. Results of SEM observation showed that tracheid wall thickness of burned parts was very thin compared with undamaged and sound wood, and tylosoid in the resin canals disappeared after the exposure to fire. SEM-EDXS analysis indicated that carbon and oxygen peaks occurred in the original energy band, and the carbon peak was higher than that of the oxygen in the burned part. A computerized tomography was also undertaken to investigate the carbonization layer formed by fire and possible internal defects.

Tree-Ring Analysis for Understanding Growth of Larix kaempferi

  • Jeong-Deok JU;Chang-Seob SHIN;Jeong-Wook SEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.345-357
    • /
    • 2023
  • The present study conducted a stem analysis to trace growth information of Japanese larch (Larix kaempferi) and predict the future changes in growth volume. For this purpose, six L. kaempferi trees over 47 years old were cut at 1-2 m intervals from a height of 0.2 m, and circular plates of 5 cm thickness were collected for stem analysis. The analysis indicated that approximately 1-8 years are required to grow up to chest height. The annual height and diameter growth increased rapidly until the trees are 15 years old and gradually decreased after 20 years. The volume of 30-year-old trees in Oegam-ri forests, which were well-managed after artificial reforestation, was 0.4837 m3, whereas that in unmanaged Singi-ri forests was 0.1956 m3. Although the volume of individual trees differed greatly depending on the forest management status, it was found that the volume increased by 1.67-1.76, 2.49, and 3.49 times at 40, 50, and 60 years age, respectively, compared to the legal harvesting age 30. Therefore, factors such as the carbon dioxide reduction effect, forest management benefits, and the condition of trees at the site should be considered before harvesting trees.

Determination of the Boundary between Juvenile-Mature Wood of Diospyros kaki and Their Wood Anatomical Variations

  • Eka KARTIKAWATI;BIENITTA;Fanany Wuri PRASTIWI;Widyanto Dwi NUGROHO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.191-203
    • /
    • 2024
  • Persimmon wood (Diospyros kaki) is a seasonal fruit-producing plant with a beautiful dark pattern in its wood that is suitable for high-quality furniture, sculptures and musical instruments. The utilization of persimmon wood can be improved by determining its anatomical characteristics, such as juvenile and mature wood. This study aimed to determine the boundaries between juvenile and mature wood and observe the anatomical properties of juvenile and mature wood and their variations in the axial direction. Three 30-year-old persimmon (D. kaki) trees grown in Karo, North Sumatra, Indonesia, were used in this study. The boundary between juvenile and mature wood was determined by measuring the fiber length and vessel element length from near the pith to near the bark. Anatomical observations were conducted in the juvenile and mature wood areas. The results showed that the average boundaries between juvenile and mature wood were 44.11 mm from the pith and were not significantly different in the axial direction of the trees. Furthermore, the wood anatomy categories of juvenile and mature wood differed significantly in terms of fiber diameter, fiber proportion, vessel proportion, and axial parenchyma proportion. In the axial direction, vessel diameter, ray parenchyma frequency, and ray parenchyma proportion at the base, middle, and top of the tree were significantly different.

Utilization of Wood Flour for Drying Energy Saving of Old Corrugated Container (골판지 원지의 건조효율 증대를 위한 목분의 이용)

  • Seo, Yung Bum;Jung, Jae Gwon;Lee, Young Ho;Sung, Yong Ju
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.8-15
    • /
    • 2014
  • The increase of wet web solid content in wet pressing will save drying energy greatly. We applied wood flours as spacers to increase the old corrugated container (OCC) solid contents in wet pressing. The mixed furnish of OCC and wood flours of 3-5% (wt/wt) increased bulk and drainage rate, and by increasing wet pressing pressure, its solid content started to be higher than 100% OCC furnish at more than 50% solid content level. Addition of cationic starch and drainage aid to the mixed furnish increased solid content further up to around 2%. Cationic starch addition compensated or exceeded the loss of tensile and compressive strength caused by the addition of wood flour, but drainage aid did not. Cationic starch also improved the stretch of the OCC, which could mitigate cracking at folding in boxboard.

Chemical and Morphological Change and Discoloration of Cedar Wood Stored Indoor (실내 보관 삼나무 목재의 재색 및 화학적·현미경적 변화 특성)

  • Lee, Kwang Ho;Cha, Mi Young;Chung, Woo Yang;Bae, Hyeun-Jong;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.566-577
    • /
    • 2009
  • The modification of wood color occurs rapidly during the service period at indoor. It is crucial to investigate the characteristics of color change, chemical and microscopical modification of wood at indoor. Wood products made of Japanese cedar at different years were used for this work. The tests were performed in order to evaluate the degree of color change of wood surface, breakpoint of brightness from surface to inside of wood, chemical analysis with FT-IR, and microscopical characteristics using the LM and TEM. Surface color of cedar wood stored indoor were rapidly changed at early stage, particularly ${\Delta}a$ (yellow), and ${\Delta}b$ (red) values were steeply decreased for one year old indoor wood, ${\Delta}L$ (white) value was dropped until 5 years old indoor wood compared with control sample. Decrease of peaks related to polysaccharide and lignin was noticed, especially, lignin was severely degraded. Although degradation of cell wall limited only to surface layers of indoor wood, degradation pattern of indoor wood showed similar degradation pattern to natural weathering of wood during outdoor weathering or wood behavior under artificial UV irradiation.

Physical and Mechanical Properties, Thermal Conductivity and Fire-Proof Performance of Wood-Cement Board (목질.시멘트보드의 물리.기계적 성질, 열전도성 및 내화성)

  • 서진석;박종영
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.31-38
    • /
    • 2003
  • This study was carried out to investigate characteristics of wood-based panels and wood-cement board for the possible uses as flooring and wall materials. The optimum cement/wood ratio(C/W ratio) of wood~cement board manufactured by clamp-pressing was from 2.7 to 3.2. The dimesional stability was superior in the C/W ratio of 3.2. Particularly, the dimensional stability of cement board using fine particle for particleboard face layer was favorable through three levels of C/W ratio. According to types of wooden material, bending strength of cement board using coarse particle for particleboard core layer or old newspaper(ONP) fiber was relatively higher than others. Thermal conductivities of wood-cement boards were no lower than that of gypsum board, and higher than those of plywood and boards. In case of wood-cement board of the C/W ratio of 2.7, the fire-proof performances of cement composite boards were greater than that of gypsum board, and weight loss reached to about a half of gypsum board. Then, wood-cement boards showed superior fire-proof performance compared to wood-based panels.

  • PDF