• 제목/요약/키워드: oilseeds

검색결과 23건 처리시간 0.014초

식용유지와 영유아식품 중 아플라톡신 분석방법 (Analytical method of aflatoxins in edible oil and infant-children foods)

  • 허수정;박승영;김순선;이준구;송지영;강은귀;이현숙;조대현
    • 분석과학
    • /
    • 제24권2호
    • /
    • pp.150-157
    • /
    • 2011
  • 아플라톡신은 Aspergillus flavus와 A. parasiticus에 의해 생성되는 독소대사산물로 발암물질이며 곡류(옥수수, 쌀, 보리), 땅콩, 과실류 및 종자류의 생산과 저장과정에서 생성된다. 곰팡이가 생성되기 쉬운 조건에서 오랜 기간 저장된 종자류에서 아플라톡신이 생성될 가능성이 있으며 이를 원료로 하여 유지로 가공 할 때도 아플라톡신이 이행될 우려가 있다. 또한 곡류나 두류 등을 가공하여 만든 영유아용식품도 아플라톡신 오염 가능성이 있다. 따라서 본 연구는 식용유지 및 영유아용식품에 대해 액체 추출법의 아플라톡신 시험법 적용가능 여부를 검토하고 필요시 새로운 분석방법을 확립하고자 하였다. 식용유지에 대한 아플라톡신은 MSPD (Matrix Solid Phase Dispersion)법으로 아플라톡신을 추출해 내고 면역친화성 칼럼을 사용해 정제하여 형광검출기가 장착된 고성능액체크로마토그래피(HPLC/FLD)를 이용해 분석하였다. 아플라톡신($B_1$, $B_2$, $G_1$, $G_2$) 검량선의 직선성은 상관계수가 0.999 이상을 나타냈고 회수율은 85.9~93.0%의 양호한 결과를 얻었으며 상대표준편차는 5.7% 이하였다. 식용유지에서 액체 추출법과 비교해 볼 때, MSPD-면역친화성컬럼법을 사용하여 회수율을 향상시켜 시험법을 확립하였다. 영유아용식품에 대한 아플라톡신 분석방법은 액체 추출법이 적합하였으며 아플라톡신($B_1$, $B_2$, $G_1$, $G_2$)에 대한 회수율은 89.5~92.3%로 양호한 결과를 얻었다.

Effects of Feeding Extruded Soybean, Ground Canola Seed and Whole Cottonseed on Ruminal Fermentation, Performance and Milk Fatty Acid Profile in Early Lactation Dairy Cows

  • Chen, P.;Ji, P.;Li, Shengli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.204-213
    • /
    • 2008
  • Four ruminally cannulated Holstein cows averaging 43 days in milk (DIM) were used in a $4{\times}4$ Latin square to determine the effect of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation and milk fatty acid profile. One hundred and twenty lactating Holstein cows, 58 (${\pm}31$) DIM, were assigned to four treatments in a completely randomized block design to study the effects of the three types of oilseeds on production parameters and milk fatty acid profile. The four diets were a control diet (CON) and three diets in which 10% extruded soybean (ESB), 5% ground canola seed (GCS) and 10% whole cottonseed (WCS) were included, respectively. Diets consisted of concentrate mix, corn silage and Chinese wild rye and were balanced to similar concentrations of CP, NDF and ADF. Ruminal fermentation results showed that ruminal fermentation parameters, dry matter intake and milk yield were not significantly affected by treatments. However, compared with the control, feeding cows with the three oilseed diets reduced C14:0 and C16:0 and elevated C18:0 and C18:1 concentrations in milk, and feeding ESB increased C18:2 and cis9, trans11 conjugated linoleic acid (CLA). Production results showed that feeding ESB tended to increase actual milk yield (30.85 kg/d vs. 29.29 kg/d) and significantly decreased milk fat percentage (3.53% vs. 4.06%) compared with CON. Milk protein (3.41%) and solid non-fat (13.27%) from cows fed WCS were significantly higher than from cows fed CON (3.24% and 12.63%, respectively). Milk urea N concentrations from cows fed the ESB (164.12 mg/L) and GCS (169.91 mg/L) were higher than cows fed CON (132.31 mg/L). However, intake of DM, 4% fat corrected milk, energy corrected milk, milk fat and protein yields, milk lactose percentage and yield, somatic cell count and body condition score were not affected by different treatments. The proportion of medium-chain fatty acid with 14 to 16 C units in milk was greatly decreased in cows fed ESB, GCS and WCS. Feeding ESB increased the concentration in milk of C18:1, C18:2, C18:3 and cis9, trans11-CLA content by 16.67%, 37.36%, 95.24%, 72.22%, respectively, feeding GCS improved C18:0 and C18:1 by 17.41% and 33.28%, respectively, and feeding WCS increased C18:0 by 31.01% compared with feeding CON. Both ruminal fermentation and production trial results indicated that supplementation of extruded soybean, ground canola seed and whole cottonseed could elevate the desirable poly- and monounsaturated fatty acid and decrease the medium chain fatty acid and saturated fatty acid content of milk fat without negative effects on ruminal fermentation and lactation performance.

Effect of Feeding Complete Rations with Variable Protein and Energy Levels Prepared Using By-products of Pulses and Oilseeds on Carcass Characteristics, Meat and Meat Ball Quality of Goats

  • Agnihotri, M.K.;Rajkumar, V.;Dutta, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1437-1449
    • /
    • 2006
  • Thirty six pre-weaned Barbari kids at 4 months age were reared on four rations computed using coarse cereal grains and by-products of pulses and oil seeds with Crude Protein (CP) and Total Digestible Nutrients (TDN) of 12 and 55% (Low protein Low energy); 12 and 60% (Low protein High energy); 14 and 55% (High protein Low energy); and 14 and 60% (High protein High energy), respectively. After 180 days on feed, male animals ($4{\times}5=20$) were slaughtered to study the effect of diet on carcass characteristics and meat quality. To asses the effect, if any, of such diet on product quality, meat balls were prepared and evaluated for quality changes when fresh as well as during storage ($-20{\pm}1^{\circ}C$). Feeding a ration with CP12 and TDN 60% (LH) to kids produced animals with highest slaughter weight (20.3 kg) yielding higher carcass weight and dressing percentage, lean (65.6%) and fat (6.6%) contents with low bone and trim losses. Although total variety meat yield was markedly higher in HL, the non-carcass fat deposition was relatively higher in LH carcasses. The water activity ($a_w$) of fresh goat meat ranged from 0.994-0.995 and total cholesterol 72.8-90.5 mg/100 g meat. The pH was high in HL and HH meat resulting in decreased ($p{\leq}0.05$) extract release volume (ERV). Meat balls were prepared using meat obtained from goats fed different rations (treatments) and stored at $-20{\pm}1^{\circ}C$. They were evaluated on day 0 and months 1, 2, 3, 4 for physicochemical, microbiological and organoleptic changes. Overall moisture (%), $a_w$, TBA number and pH value were 67.9, 0.987, 0.17, 6.6 respectively and were not affected by treatments except pH that was significantly ($p{\leq}0.01$) lower on LH. As the storage period advanced moisture, pH, $a_w$ and TBA number increased irrespective of treatments. Feeding various diets had no marked effect on microbial load of meat balls but with increasing storage period Standard Plate Count (SPC) and psychrotrophs declined ($p{\leq}0.01$). Treatment LL and LH produced meat balls with better flavour.