• Title/Summary/Keyword: oil-drop

Search Result 224, Processing Time 0.021 seconds

Dynamic Behavior Study in Systems Containing Nonpolar Hydrocarbon Oil and C12E5 Nonionic Surfactant (C12E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동 관찰)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed in systems containing $C_{12}E_5$ nonionic surfactant solution and nonpolar hydrocarbon oil. The phase behavior result showed an oil-in-water(O/W) microemulsion(${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water-in-oil(W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a 3 phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop with time were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous surfactant solution were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time were found to increase with an increase in the chain length of a hydrocarbon oil.

DESIGN OF HELIX PITCH OF A CYCLONE TYPE OIL SEPARATOR FOR A COMPRESSOR (사이클론 방식 압축기 유분리기의 나선 피치 설계)

  • Jang, Seongil;Ahn, Joon
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.8-13
    • /
    • 2014
  • A series of numerical simulation has been carried out to study performance of a cyclone type oil separator, which is designed for the compressor of a refrigeration system. Working fluid is R22, which is a typical refrigerant, and mineral oil droplet is supplied. Pitch of the helix is considered as design parameters to make a compact separator. Depending on the helix pitch, separation efficiency varies from 97.5 to 99%, while predicted pressure drop ranges from 5 to 6.5 kPa. Considering both of the pressure drop and separation efficiency, helix pitch of the separator has been designed as 50 mm.

Predictionof Average Drop Size in Turbulently Agitated Oil-in-Oil Dispersions (난류교반되는 오일/오일 분산계의 평균입자경 예측)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • 액체와 액체를 교반할 경우 혹은 두가지 이상의 상이 함께 반응하는 화학공정의 경 우에서는 비상용성인 액체들을 난류조건하에 분산시켜 섞이게 한다. 부산계로 구성된 중합 반응기의 경우 분산입자의 크기는 최종제품의 생산성 및 품질에 큰 영향을 미치게 되므로 분산입자의 크기를 예측하는 것은 대단히 중요하다. 이러한 분산계에서 분산입자의 크기는 분산입자가 겪는 유동장에 의해 결정된다. 오일/오일 분산계로 이루어진 고분자 유탁액의 난류교반시 유동장은 종종 점성전단 부영역에 속하게 되는데 이경우의 분산입자의 크기를 예측하는 모델에 대한 연구는 별로 이루어지지않았다. 본연구에서는 오일/오일 분산계의 고 분자 유탁액에 대한 분산입자의 크기를 예측하는 모델식을 유체동력학적인 이론을 배경으로 하여 개발하였다. 개발한 모델식을 난류교반을 겪은 오일/오일 분산계를 거쳐 생산된 제품 인 내충격성 폴리스티렌으로 검증하여 모델식의 타당성을 입증하였다.

  • PDF

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Nonpolar Hydrocarbon Oil and C10E5 Nonionic Surfactant Solution (Videomicroscopy를 이용한 C10E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동에 관한 연구)

  • Bae, Min-Jung;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed on systems containing $C_{10}E_5$ nonionic surfactant solutions and nonpolar hydrocarbon oils. The phase behavior showed an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water in oil (W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a three-phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time increased with an increase in the chain length of a hydrocarbon oil.

Influence of Refrigeration Oil on Evaporation Heat Transfer Characteristics of R-290 Inside Micro Fin Tube (마이크로 휜 증발관내 냉매 R-290의 열전달 특성에 미치는 냉동유의 영향)

  • Park, Cheol-Min;An, Young-Tae;Lee, Wook-Hyun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.938-944
    • /
    • 2000
  • Recently, micro fin tube is widely used to heat exchanger for high performance. And, as the alternative refrigerants for R-22, hydrocarbons such as R-290, R-600 and R-600a are very promising because of their low GWP and ODP. Thus, R-290 was used as working fluid in this study. Most design of heat exchanger had been based on heat transfer characteristics of pure refrigerant although refrigerant oil exists in the refrigeration cycles. So, the influence of oil on heat transfer characteristics have to be considered for investigating exact evaporation heat transfer characteristics. But, this is an unresolved problem of refrigeration heat transfer. Therefore the influence of the refrigeration oil to the evaporation heat transfer characteristics of R-290 were conducted in a horizontal micro tin tube. The mineral oil was used as refrigeration oil. The experimental apparatus consisted of a basic refrigeration cycle and a system for oil concentration measurement. Test conditions are as the follows; evaporation temperature $5^{\circ}C$, mass velocity 100 $kg/m^2s$, heat flux 10 $kW/m^2$, oil concentration 0, 1.3, 3.3, 5.7 wt.%, and quality $0.07{\sim}1.0$. When refrigeration oil was entered, oil foaming was observed at the low quality region. And, very small bubbles were observed as quality was increased. Pressure drop and heat transfer coefficient increased as the concentration of refrigeration oil increased to 5 wt.%.. The performance index of heat exchanger was the highest near 3.3 wt.%.

Experimental Study on Evaporation Heat Transfer and Oil Effect in Micro-fin Tube Using $CO_2$ (마이크로핀관 내 $CO_2$의 증발 열전달과 오일 영향에 관한 실험적 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • In this paper, the experimental results on evaporation heat transfer characteristics were reported for a micro-fin tube using $CO_2$. An experimental refrigerant loop had been established to measure the evaporation heat transfer coefficient and pressure drop of $CO_2$. Experiments were conducted for mass fluxes, heat fluxes, saturation temperatures and PAG oil concentrations. With increasing the heat flux and the saturation temperature, the evaporation heat transfer coefficient increased. At the higher mass flux, however, the exit vapor quality of the micro-fin tube was to be lower. The peak of the heat transfer coefficient was shifted toward low quality region. The evaporation pressure drop increased as the mass flux increased and the saturation temperature decreased. As PAG oil concentration increased, the evaporation heat transfer coefficient decreased and the dryout was delayed by oil addition.

An Experimental Study on Sealing Improvements of Non-Contact Type Seal for Oil Mist Lubrication

  • Na, Byung-Chul;Chun, Keyoung-Jin;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.79-83
    • /
    • 2002
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindle requires non-contact type of sealing mechanism. Current work emphases on the investigation of the air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet was injected against through the leakage flow, It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement The sealing effects of the leakage clearance and the air jet magnitude are studied in various parameters. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient Effect of sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger.

Performance Analysis of the Lubricating Oil Feed Pump by the Anslysis of the Flow Network (유로망 해석에 의한 윤활유 공급펌프 성능 해석)

  • Kil, Doo-Song;Lee, Young-Ho
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • In this paper, the cause of the discrepancy of the inlet and outlet flow of the lubricating oil feed pump was analyzed by the flow measurement and the analysis of the flow network. At first, we thought that the flow difference was induced by a leak in the middle of the flow network. But, through the flow measurement using ultrasonic flow meter and the performance analysis of the pump, we knew that the cause of the flow difference was due to a drop in efficiency of the pump according to the pressure drop of the outlet. Also, we knew that the shape of the piping had no effect on the efficiency of the pump.

  • PDF

The Holding Power of the Oil Boom Anchor (오일 펜스 Anchor의 파주력)

  • CHANG Duk Jong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.743-748
    • /
    • 2003
  • An oil boom was set up in order to contain diffused oil from spills and for the retrenchment of damage caused by oil Pollution. Therefore, the oil boom anchor needed proper holding power to endure high resistance from flowing streams and to secure the oil boom around the spill, and must dredge directly into the seabed when it is dropped and block oil outflow immediately. This study investigated the holding power of the danforth anchor and the coastal fishing vessel anchor used for oil booms in the KMPRC (Korea Marine Pollution Response Corporation). For each type, a 30 kg and 20 kg anchor were used. The holding power of the danforth anchors were measured by dropping both weights 10 times. However the coastal fishing vessel anchors were dropped only 5 times each, because no substantial differences were found between drops. In the results of the danforth anchors, an anchor awoke occurred in 2 drops of the 30 kg anchor and in 4 drops of the 20 kg anchor, wherein there was no holding power to be measured. With exception to the anchor awoke cases, the maximum holding power of the danforth 30 kg and 20 kg anchors was 250-520 kg and 123-233 kg, respectively. In the case of the coastal fishing vessel anchors of 30 kg and 20 kg, throughout the experiment, there was no occurrence of an anchor awoke. For the 30 kg and 20 kg anchors, the maximum holding power was measured to be 209-230 kg and 155-170 kg, respectively. Therefore, the holding power of the coastal fishing vessel anchor was shown to be much poorer than that of the danforth anchor. However, the holding power of the danforth anchor was very unstable. Due to the occurrences of anchor awoke, there was no holding power and the measurement value of maximum holding power showed too much variation among the drop tests. Also, after the maximum holding power was achieved, anchor awoke occurred easily. In the case of the coastal fishing vessel anchor was much more stabile, because there was no anchor awoke and no instance where holding power failed. Also the maximum holding power was reached quickly and almost no variation occurred among the drop tests.

Effect of Cosurfactant on Microemulsion Phase Behavior in NP7 Surfactant System (보조계면활성제가 NP7 계면활성제 시스템의 마이크로에멀젼 형성에 미치는 영향에 관한 연구)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.416-422
    • /
    • 2011
  • In this study, the effect of cosurfactant on the phase equilibrium and dynamic behavior was studied in systems containing NP7 nonionic surfactant solutions and nonpolar hydrocarbon oils. All cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and thus promoted the transition from an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with an excess oil phase to a three-phase region containing excess water, excess oil, and a middle-phase microemulsion and further to a water in oil (W/O) ${\mu}E$ in equilibrium with the excess water phase. The transition temperature was found to decrease with both increases in the chain length and amount of addition of a cosurfactant. Dynamic behavior studies under O/W ${\mu}E$ conditions showed that an oil drop size decreased with time due to the solubilization into micelles. On the other hand, both the spontaneous emulsification of water into the oil phase and the expansion of oil drop were observed under W/O ${\mu}E$ conditions because of the diffusion of surfactant and water into the oil phase. Under conditions of a three-phase region including a middle-phase ${\mu}E$, both the rapid solubilization and emulsification of the oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Dynamic interfacial tension measurements have been found to be in a good agreement with dynamic behavior results.