• Title/Summary/Keyword: oil-degradation

Search Result 405, Processing Time 0.025 seconds

Biodegradation of Bunker-A Oil by Acinetobacter sp. EL-081K

  • Kim, Hee-Goo;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.227-230
    • /
    • 2000
  • Bunker-A oil-degrading microorganisms were isolated from a marine environment using an enrichment culture technique. The isolated strain EL-081K was identified as the genus Acinetobacter based on the results of morphological, culture, and biochemical tests. The optimal temperature and initial pH for bunker-A oil degradation were $25^{\circ}C$ and 7.0, respectively, including aeration. The optimal medium composition for the degradation of bunker-A oil by Acinetobacter sp. EL_O81K was 10 ml/l bunker-A oil as the carbon source and 0.1% (NH$_4$)$_2$SO$_4$as the nitrogen source. Under the above conditions, the biodegradability of bunker-A oil was 38% after 96 hours of incubation. The addition of detergent did not increase the bunker-A oil degradation.

  • PDF

A Study on the characteristics of degradation sensor for insulation oil (절연유(絶緣油) 열화(劣化)센서 특성(特性) 연구(硏究))

  • Chon, Y.K.;Sun, J.H.;Kang, D.S.;Joo, B.S.;Yoon, J.Y.;Chung, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1371-1374
    • /
    • 1995
  • It is well known that the degradation of transformer oil conseqently lead to the failure of transformer. This paper discussed the characteristics of the degradation sensor checking transformer oil condition in live line. The degadation sensor is composed of base ring, electrodes and porous ceramic, passed through the transformer oil and checks the transformer oil condition through sensor's leakage current. So it is important to minimize the leakage current of base ring and connection parts. To investigate the leakage current of base ring and connection parts the characteristics of V-T-I and DC 2 KV and other examinations were performed. It is verified that ionized transformer oil caused by the expansion of temperature increases in the leakage current of porous ceramic sensor. It is certification that the leakage current of other parts of porous ceramic is very small(about 2%) compared with the porous ceramic body and it is confirmed that the leakage current in porous ceramic is changed sensitively according to the new oil(NO) and and the degradation oil(DO).

  • PDF

A study on the characteristics of degradation sensor for transformer insulation oil (변압기(變壓器) 절연유(絶緣油) 열화(劣化)센서의 특성연구(特性硏究))

  • Chon, Y.K.;Sun, J.H.;Kang, D.S.;Kim, M.D.;Kweon, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1765-1768
    • /
    • 1996
  • It is well known that the degradation transformer oil is mainly effected to the failure of transformer. In this paper it is discussed the characteristics of the degradation sensor checking transformer oil condition in live line. The degadation sensor composed with base ring, electrodes and porous ceramic passed through the transformer oil and checked the transformer oil condition with sensor's leakage current. It is important to minimize the leakage current of base ring and connection parts. To investigate the leakage current of base ring and connection parts it is examined the characteristics of V-T-I and DC 2 KV and other examinations. It is verified that ionized transformer caused by the expansion of oil temperature increase in the leakage current of porous ceramic sensor. It is certificated that the leakage current of other parts of porous ceramic is very small (about 2 %) than the porous ceramic and it is confirmed that the leakage current in porous ceramic is changed sensitively according to the new oil(NO) and and the degradation oil(DO).

  • PDF

Enhanced Natural Purification of Crude Oil Contaminated Tidal Flat (원유로 오염된 갯벌 지역의 자연정화 기능 향상 기술의 개발)

  • Kim, Young-A;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • Tidal flats which are ecologically sensitive, are hard to remediate once they are contaminated by oil spill accidents. Traditional oil remediation measures focus on removal efficiency, and their improper implementation can adversely affect crude oil contaminated coastal areas and greatly disrupt the structure and functions of crude oil contaminated tidal flats. In this study, the oil degradation due to the implementation of remediation measures naturally enhanced using air and natural oil sorbents was evaluated in the lower strata of tidal flats. The effects of air and natural oil sorbents on oil degradation for two concentration levels (< 500 ppm and > 500 ppm) were tested at artificially contaminated tidal flats. Fifty days after these treatments, the natural oil sorbent treatment showed the lowest total petroleum hydrocarbon (TPH) concentration ($4.46{\pm}1.47%$) at the low concentration level, whereas both air and natural oil sorbent treatments showed high degradation efficiencies at the high concentration level ($29.30{\pm}4.39%$). Although the phosphatase activity decreased for all treatments, there was no significant difference between the decreases for the different treatments; on the other hand, B-glucosidase activities were high for both air and natural oil sorbent treatments. Although degradation efficiencies decreased as the concentration increased, the air provision and natural oil sorbent treatment could be an effective ecological restoration measure for oil contaminated tidal flats while minimizing the environmental impact of the remediation efforts.

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.

Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers (전력용 변압기의 열화에 의해 생성된 부산물의 분석)

  • Kim, Jae-Hoon;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1561-1565
    • /
    • 2007
  • According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at $140^{\circ}C$ temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time.

MICROBIAL COLONISATION AND DEGRADATION OF SOME FIBROUS CROP RESIDUES IN THE RUMEN OF GOATS

  • Ho, Y.W.;Abdullah, N.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.519-524
    • /
    • 1996
  • An investigation was carried out to study the microbial colonization and degradation of five crop residues, viz., sago waste, rice straw, oil palm trunk shavings, untreated palm press fibre and palm press fibre teated with 3% ammonium hydroxide in the rumen of goats. Colonisation by rumen bacteria and fungi was already established on all the five crop residues 8 h after incubation. However, the extent of colonization varied among the crop residues. Microbial colonization was poor on palm press fibre (treated and untreated) but more extensive on sago waste, oil palm trunk shavings and rice straw. By 24 h, most of the soft-walled tissues in sago waste, rice straw and oil palm trunk shavings were degraded leaving the thick-walled tissues extensively colonized by bacteria and fungi. Degradation on palm press fibre was still limited. At 48 h, the thick-walled tissues of sago waste, oil palm trunk shavings and rice straw showed various degrees of degradation - from small erosion zones to large digested areas. Bacterial growth was similar to that at 24 h but fungal growth was less. On palm press fibre, microbial colonization was more extensive than at 24 h but degradation of the fibres was still limited. Degradation of all the five crop residues at 72 h was somewhat similar to that at 48 h. Overall, microbial colonization and degradation were the most extensive on sago waste, followed by rice straw and oil palm trunk shavings, and the least on palm press fibre (treated and untreated). Dry matter loss of the five crop residues at the various incubation periods also showed the same order of degradation.

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • Lee, Chang-Ho;Kim, Hee-Sik;Suh, Hyun-Hyo;Choi, Soung-Hun;Oh, Hee-Mock;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF

Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design

  • Tetteh, Emmanuel Kweinor;Naidoo, Dushen Bisetty;Rathilal, Sudesh
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.711-717
    • /
    • 2019
  • The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.

The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine (엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.