• Title/Summary/Keyword: oil-degradation

Search Result 405, Processing Time 0.021 seconds

Effects of Seed Germination on Oil Oxidation and Tocopherol Stability of Perilla Oil (들깨의 발아가 들깨유의 산화 및 토코페롤 안정성에 미치는 영향)

  • Hwang, Hyun-Suk;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Auto- and photo-oxidative stability of oil extracted from germinated perilla seeds during storage at $60^{\circ}C$ for 4 days was studied by determining peroxide and conjugated dienoic acid values. Tocopherol contents during oil oxidation were also monitored by high performance liquid chromatography. Perilla oil was oxidized and tocopherols were degraded during storage at $60^{\circ}C$ regardless of the presence of light. Light increased oil oxidation and tocopherol degradation. Seeds germinated for 12 h had increased tocopherol contents in the oil and improved the auto- and photo-oxidative stability of the perilla oil. Tocopherol played a more important role as an antioxidant in the presence of light than in the absence of light.

Water Resistance Evaluation of the Oils Coating for Conservation of Wooden Cultural Heritage (목조문화재 보존을 위한 유지류 코팅제의 방수 성능 평가)

  • Na, Won Ju;Cho, So Yeong;Kim, Do Rae;Chung, Woo Yang
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • Surface of the wooden cultural heritage has been protected from moisture by natural oils (such as perilla oil and tung oil), which accelerated degradation. But we can find seldom the research on the processes and performances of oil coatings. In this study, the water resistant performances by wood direction were compared to 3 types of natural oil and 2 types of oil stain, and the effect of additional indoor conditioning and temperature of oil were appraised in longitudinal direction. The natural oils block moisture about 79.2% comparing to the control in longitudinal direction. Especially the tung oil showed the outstanding water resistance about 90.5%. The water resistant performances decreased about 8.8% by additional indoor conditioning for 2 years. Heated oil improved the water resistance about average 5.0%.(Max. 9.6% with linseed oil).

Investigation of Sweet and Sour Corrosion of Mild Steel in Oilfield Environment by Polarization, Impedance, XRD and SEM Studies

  • Paul, Subir;Kundu, Bikramjit
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.249-256
    • /
    • 2018
  • Metallic structures in the oil and gas production undergo severe degradation due to sweet and sour corrosion caused by the presence of $CO_2$ and $H_2S$ in the fluid environment. The corrosion behavior of 304 austenitic stainless was investigated in the presence of varying concentrations of $CO_2$ or $H_2S$ and $CO_2+H_2S$ to understand the effect of the parameters either individually or in combination. Potentiodynamic polarization study revealed that a small amount of $CO_2$ aided in the formation of calcareous deposit of protective layer on passive film of 304 steel, while increase in $CO_2$ concentration ruptured the layer resulting in sweet corrosion. The presence of $S^{2-}$ damaged the passive and protective layer of the steel and higher levels increased the degradation rate. Electrochemical impedance studies revealed lower polarization resistance and impedance at higher concentration of $CO_2$ or $H_2S$, supporting the outcomes of polarization study. XRD analysis revealed different types of iron carbides and iron sulphides corresponding to sweet and sour corrosion as the corrosion products, respectively. SEM analysis revealed the presence of uniform, localized and sulphide cracking in sour corrosion and general corrosion with protective carbide layer amid for sweet corrosion.

Estimating for Properties of Insulating Degradation for Cellulose paper with Aging Temperature and Correlation by Statistical Treatment (셀룰로오스 절연지의 열화온도에 따른 절연특성 및 통계처리에 의한 상관관계 규명)

  • Kim, Jae-Hoon;Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.912-917
    • /
    • 2010
  • It was known that oil-filled transformer's life depended on insulating paper which was applied to transformers for insulating of transformer. Therefore when paper was aged, its electrical, mechanical and chemical characteristics were changed. Especially if operating temperature was high, paper was quickly damaged. As cellulose paper which was mainly used for solid insulation of transformers was degraded, the cellulose polymer chains broke down into shorter lengths and gases such as CO, $CO_2$, $CH_4$, $C_2H_4$ and so on were produced from paper. Also by-product known as furan compounds were producted from paper and it were dissolved within insulating oil. In this paper accelerating aging cell was aged during 60 hours at 100, 150, 180 and $200^{\circ}C$, respectively, so evaluating the chemical characteristics of cellulose paper by thermal. An it were performed analysis such as tensile strength(TS), dissolved gas analysis(DGA) and high performance liquid chromatography(HPLC). Also for analyzing of correlation between insulating degradation characteristics, it was performed linear regression method as statistical treatment.

Characteristics of Wasted Lubricant Degradation by Acinebobacter lwoffii 16C-1

  • Kim, Gab-Jung;Lee, In-Soo;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.76-81
    • /
    • 1999
  • 216 microorganisms which able to degrade wasted lubricant were isolated in the region of contaminated with wated lubricant such automobile repair shops, garages and gas stations in Taejon. Most activated strain among them is selected and used in this research. The microorganism in identified as Acinetobacter lwoffii 16C-1, which shows active growth and hydrocargon utilization withnormal alkane such as tetradecane, hexadecane and octadecane, and do not grow aromatic hydrocargons, cycloalkane, and branched alkane. In addition, A. lwoffii 16C-1 has resistance to heavy metals such as Ba, Li, Cr, and Mn more than 6.4mg/ml, and showed negligible tolerance against antibiotics. Effects of environmental conditions including concentration of wasted lubricnt, pH, NaCl concentration, nitrogen source and phosphate on microorganism growth and emulsification were studied. 2% of wasted lubricant, pH 7.0, 0-1% of NaCl, 0.2% of peptone, and 0.01% of K2HPO4 is turn out to be optimum condition. By the analysis of remaining oils, almost of hydrocarbons added to the media are removed by A. lwoffii 16C-1 at 30$^{\circ}C$ after 2 days of culture, which showed excellent oil degradation characteristics.

Degradation Properties and Production of Fuels from Hemicellulose by Pyrolysis-liquefaction (열분해액화반응에 의한 헤미셀룰로오스의 분해특성 및 연료물질 생성)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • Hemicellulose, consisteing of pentose as xylose and mannose, is usable as high octane fuels and heavy oil additives if depolymerized to monomer unit. In this study, thermochemical degradation by pyrolysis-liquefaction of hemicellulose, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperatures from $200^{\circ}C$ to $400^{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. Ketones, as 2,3-dimethyl-2-cyclopenten-1-one, 2,3,4-trimethyl-2-cyclopentan-1-one, and 2-methyl-cyclopentanone, could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels. Combustion heating value of liquid products obtained from thermochemical conversion processes of hemicellulose was in the range of 6,680~7,170 cal/g. After 40 min of reaction at $400^{\circ}C$ in pyrolysis-liquefaction of hemicellulose, the energy yield and mass yield were as high as 72.2% and 41.2 g oil/100 g raw material, respectively.

Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders (Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

Rancidity Prediction of Soybean Oil by Using Near-Infrared Spectroscopy Techniques

  • Hong, Suk-Ju;Lee, Ah-Yeong;Han, Yun-hyeok;Park, Jongmin;So, Jung Duck;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.219-228
    • /
    • 2018
  • Purpose: This study evaluated the feasibility of a near-infrared spectroscopy technique for the rancidity prediction of soybean oil. Methods: A near-infrared spectroscopy technique was used to evaluate the rancidity of soybean oils which were artificially deteriorated. A soybean oil sample was collected, and the acid values were measured using titrimetric analysis. In addition, the transmission spectra of the samples were obtained for whole test periods. The prediction model for the acid value was constructed by using a partial least-squares regression (PLSR) technique and the appropriate spectrum preprocessing methods. Furthermore, optimal wavelength selection methods such as variable importance in projection (VIP) and bootstrap of beta coefficients were applied to select the most appropriate variables from the preprocessed spectra. Results: There were significantly different increases in the acid values from the sixth days onwards during the 14-day test period. In addition, it was observed that the NIR spectra that exhibited intense absorption at 1,195 nm and 1,410 nm could indicate the degradation of soybean oil. The PLSR model developed using the Savitzky-Golay $2^{nd}$ order derivative method for preprocessing exhibited the highest performance in predicting the acid value of soybean oil samples. onclusions: The study helped establish the feasibility of predicting the rancidity of the soybean oil (using its acid value) by means of a NIR spectroscopy together with optimal variable selection methods successfully. The experimental results suggested that the wavelengths of 1,150 nm and 1,450 nm, which were highly correlated with the largest absorption by the second and first overtone of the C-H, O-H stretch vibrational transition, were caused by the deterioration of soybean oil.

A Study on the Effects of Contaminant Types on the Wear Degradation Characteristics in Internal Gear Pumps (불순물 입자의 유형에 따른 내접기어 펌프에서의 마모열화 특성 연구)

  • Shin, Jung-Hun;Ji, Kyung-Ryeol;Kim, Hyoung-Eui
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • The mechanical equipments which are exposed to impure environment undergo significant reductions in their own lifetimes. Several environmental test procedures have been developed to analyze these phenomena. Moreover in the industry to require shorter development duration, accelerated life testers artificially add test containments into machines. In this research JIS Z 8901 test powder was added into internal gear pumps which are used as oil pumps in vehicles and thus the effects of the addition on the degradation of the pumps were examined. Three kinds of contaminants were selected. Two of the contaminants are identical in particle size but different in the composition of the ingredients. The other pair have identical ingredients and composition but different particle size. The quantity of contaminants was also an interesting factor in this study. The results show that each JIS contaminant caused notable degradation in the discharge flow characteristic of pumps while friction torque degradation did not have any tendency. Finally leakage rates were deduced and equivalent wear volume ratios were calculated.

Degradation Properties and Production of Fuels from Hemicellulose by Acetone-Solvolysis (아세톤 용매분해법에 의한 헤미셀룰로오스의 분해특성 및 연료물질의 생성)

  • Lee, Jong-Jib
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • In this study, thermochemical degradation of hemicellulose by Acetone-Solvolysis, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperature from $200{\circ}C$ to $400{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. ketones, as 4-methyl-3-penten-2-one, 3-methylene-2-pentanone, 22,6-dimethyl-2, 5-heptadien-4-one, 4-methyl-2-pentanone, 5-methyl-2-hexanone, 3,5,5-trimethyl-2-cyclohexen-1-one, and bezenes. as 1,4-dimethylbenzene, 1-methyl-2-(1-methylethyl)-benzene, 1,4-dimethyl-2-(2-methylpropyl)benzene, 4-secbutyl-ethyl benzene, could be used as high-octane-value fuels and fuel additives. Combustion heating value of liquid products from thermochemical conversion processes of hemicellulose was in the range of $6,680{\sim}7,170cal/g$. After 40min of reaction at $400{\circ}C$ in Acetone-Solvolysis of hemicellulose, the energy yield and mass yield was as high as 72.2% and 41.2g oil/100g raw material, respectively.