• Title/Summary/Keyword: oil water separation

Search Result 132, Processing Time 0.022 seconds

Development of Aqueous/Semi-Aqueous Cleaning Agent and its Field Application to Cleaning Process of Electronic Parts (수계/준수계 세정제의 개발 및 전자부품 세정공정 현장적용 연구)

  • Kim, Han-Seong;Cha, An-Jeong;Bae, Jae-Heum;Lee, Ha-Yeoul;Lee, Myung-Jin;Park, Byeong-Deog
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.61-72
    • /
    • 2004
  • In this study, aqueous/semi-aqueous cleaning agents which consist of organic solvent, surfactant, cosurfactant, and water were developed by changing formulation parameters such as organic solvent type and contents, surfactant type and contents, and cosurfactant/surfactant(A/S) ratio, etc.. And physical properties and flux removal of the formulated cleaning agents have been evaluated. Also, the performance of oil-water separation from the rinse water contaminated during the cleaning process was evaluated for its recycling. The formulated cleaning agents in this work expected to have good penetration because of their low viscosity and low surface tension values of 30.2~32.5 dyne/cm. The flux removal with the terpene type cleaning agent was higher than that with hydrocarbon type cleaning agent and two commercial products (CPA(commercial product A), CPB(commercial product B)). And the performance of oil-water separation by gravity settling from the rinse water contaminated with formulated cleaning agent and soils was shown to be very good. The cleaning agents developed in this work were applied to surface mounting technology(SMT) cleaning process for manufacturing electronic parts at L electronic company. As a result, the newly developed cleaning agents showed two times better cleaning speed for removal of solder cream than the conventional ond containing ethanol and IPA(isopropyl alcohol). In addition, malodor and VOC problems generated by the previous organic cleaning agents have been solved in the manufacturing field through introduction of the non-volatile and environmental-friendly cleaning agents to the field.

  • PDF

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

Optimization of fish oil extraction from Lophius litulon liver and fatty acid composition analysis

  • Hu, Zhiheng;Chin, Yaoxian;Liu, Jialin;Zhou, Jiaying;Li, Gaoshang;Hu, Lingping;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.76-89
    • /
    • 2022
  • The Lophius litulon liver was used as raw material for the extraction of fish oil via various extraction methods. The extraction rate by water extraction, potassium hydroxide (KOH) hydrolysis and protease hydrolysis were compared and the results revealed the protease hydrolysis extraction had a higher extraction rate with good protein-lipid separation as observed by optical microscope. Furthermore, subsequent experiments determined neutrase to be the best hydrolytic enzyme in terms of extraction rate and cost. The extraction conditions of neutrase hydrolysis were optimized by single-factor experiment and response surface analysis, and the optimal extraction rate was 58.40 ± 0.25% with the following conditions: enzyme concentration 2,000 IU/g, extraction time 1.0 h, liquid-solid ratio 1.95:1, extraction temperature 40.5℃ and pH 6.5. The fatty acids composition in fish oil from optimized extraction condition was composed of 19.75% saturated fatty acids and 80.25% unsaturated fatty acids. The content of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 8.06% and 1.19%, respectively, with the ratio (6.77:1) surpassed to the recommendation in current researches (5:1). The results in this study suggest protease treatment is an efficient method for high-quality fish oil extraction from Lophius litulon liver with a satisfactory ratio of DHA and EPA.

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF

Comparison of Extraction Solvents on Separation Performance of Indole Contained in Crude Methylnaphthalene Oil (조제 메틸나프탈렌유에 함유된 인돌의 분리성능에 관한 추출 용매 비교)

  • Su Jin Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.468-472
    • /
    • 2024
  • This study experimentally examined the separation performance of indole (IN) contained in crude methyl naphthalene oil (CMNO) by methanol extraction and then compared these results with formamide extraction. CMNO containing about 4.36% IN, which is attracting attention as an intermediate raw material such as medicine, essential amino acids, and perfumes, was used as a raw material, and methanol aqueous solution was used as a solvent, respectively. The increase in the initial volume fraction of water in the solvent (yw,0) sharply decreased the distribution coefficient (mIN) and yield (YIN) of IN, but conversely increased the selectivity of IN in reference to 2-methylnaphthalene (2MNA). An increase in the initial volume ratio of solvent to feed (E0/R0) increased mIN, YIN, and 𝛽IN,2MNA. In the range of 0.1 ≤ yw,0 ≤ 0.3, mIN and YIN of methanol extraction were approximately 1.9~5.9 times and 1.8~3.6 times greater than those of formamide extraction, respectively, whereas 𝛽IN,2MNA of formamide extraction were 4.6~8.2 times greater than those of methanol extraction.

Recovery Process for the Recycling of Waste Carbon Black

  • Lee, Sungoh;Nampyo Kook;Tam Tran;Bangsup Shin;Kim, Myongjun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.215-219
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A lot of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurity content such as sulphur, iron, ash and etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3-5 times more expensive than oil-based carbon black because of its process difficulties and requires pollutant treatment. Hydrophilic carbon is normally used far conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc.. In these applications, hydrophilic carbon must maintain its high purity. In this study magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. As results, the ash, iron and sulphur content of product decreased to less than 0.01wt.%, 0.0lwt.% and 0.3wt.% respectively, and the surface area of product was about 930 $m^2$/g.

  • PDF

Study on the Application of Cleaner Production using Life Cycle Assessment in the Can Industry (캔 산업의 전과정평가를 통한 청정생산 적용에 관한 연구)

  • Koo, H.J.;Chung, C.K.
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.205-215
    • /
    • 2002
  • Can industry has grown up with growth of packing industry and its recycling activation in recent years. But profit has became low by oversupply. Therefore, can industry needs a reduction of environmental load and official loss by an optimization of process in order to maintain its competitiveness. In this study, the main issues of aluminium can production was investigated by life cycle assessment. As a result of LCA, it examined closely by main issues that reduce defective cans and remove tramp oil. In the present work, it was recommended that setup of R/O system, sterillizing tramp oil separation, and heating system of DI water. The ROI investigated 6.4 months. The operating cost with the advanced processes could be reduced annually by 300 million won.

  • PDF

Photodegradation stability study of PVDF- and PEI-based membranes for oily wastewater treatment process

  • Ong, C.S.;Lau, W.J.;Al-anzi, B.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • In this work, an attempt was made to compare the effects of UV irradiation on the intrinsic and separation properties of membranes made of two different polymeric materials, i.e., polyvinylidene fluoride (PVDF) and polyetherimide (PEI). The changes on membrane structural morphologies and chemical characteristics upon UV-A exposure (up to 60 h) were studied by FESEM and FTIR, respectively. It was found that cracks and fractures were detected on the PVDF-based membrane surface when the membrane was exposed directly to UV light for up to 60 h. Furthermore, the mechanical strength and thermal stability of irradiated PVDF-based membrane was reported to decrease with increasing UV exposure time. The PEI membrane surface meanwhile remained almost intact throughout the entire UV irradiation process. Filtration experiments showed that the permeate flux of UV-irradiated PVDF membrane was significantly increased from approximately 11 to $16L/m^2.h$ with increasing UV exposure time from zero to 60 h. Oil rejection meanwhile was decreased from 98 to 85%. For the PEI-based membrane, oil rejection of >97% was recorded and its overall structural integrity was marginally affected throughout the entire UV irradiation process. The findings of this work showed that the PEI-based membrane should be considered as the host for photocatalyts incorporation if the membrane was to be used for UV-assisted wastewater treatment process.

Impurities formed from ethanol fermentation process among different materials and it′s effective separation in large scale (대규모의 주정발효 과정에서 생성된 불순물과 그 효율적 분리)

  • 류병호;김운식;남기두;이인기;하미숙
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.371-376
    • /
    • 1986
  • This study to elucidate concentrations of impurities such as methanol and fusel oil formed during fermentation process among the different materials and has been applied technical seperation for processing improvement by continuous distillation of super-allospas type. Methanol was formed high concentrations of cutting dried sweet potato and tapioca in order among the different materials during fermentation process. n-Propanol oil was formed high concentration of rice, cutting dried sweet potato, corn, naked barley and tapioca in order among the those materials. I-Buthanol showed high concentration of tapioca, corn, rice, cutting dried sweet potato and naked barley in order and isoamyl-alcohol showed high concentration of tapioca, rice, cutting dried sweet potato, corn and naked barley in order. Using the continuous distillation of super-allospas type, the following are collection ratios of n-propanol, iso-butanol, n-butanol and iso-amylalcohol: 37.9%, 28.6%, 37.4%, and 56.1% when 78.25% (v/v), 68.54% (viv), 50.0% (viv), and 50.0% (v/v) alcohol are used, respectively. Fusel oil and bad alcohol put into the recovery column and then seperated directly by side cut of fusel oil partially from plate of tower bottom after concentration again. Extra impurities seperated by fusel oil seperator when 20 % (v/v) alcohol adjusted with water.

  • PDF

Synthesis and Characterization of Lithium Dual Complex Grease (Lithium Dual Complex 그리이스의 합성 및 특성연구)

  • 최웅수;권오관;문탁진;유영홍
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.80-87
    • /
    • 1985
  • Lithium dual complex grease was prepared through the second continuous saponification reaction of a complex gellant system whose essential components comprised of a selected hydroxy fatty acid, lithium hydroxide monohydrate and boric acid to have a fiber structure of chemical, thermal and mechanical stability at high temperatures. An optimum amount of complex gellant was found to be 14% (NLGI #2), and an addition of castor wax of 1.5% provided an excellent performance properties, especially. The oil separation, oxidation stability, water wash-out property, shear stability, extreme pressure and wear property of thus prepared were tested by the ASTM and KS methods, and a characteristic result was obtained.