• Title/Summary/Keyword: oil tube

Search Result 208, Processing Time 0.022 seconds

Design of Throttle Orifices for an Aircraft Door Damper (항공기의 도어 댐퍼용 교축 오리피스의 설계)

  • Kwon, Y.C.;Kim, C.H.;Hong, Y.S.;Kim, S.B.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.23-28
    • /
    • 2012
  • In this study the flow rate-to-pressure difference characteristics of short-tube type damping orifices for an aircraft door damper were investigated by CFD analyses and experiments. As the design parameters of the damping orifice its diameter, inlet and outlet angle, tube length and the viscosity of the working fluid were taken into consideration. The results showed that the discharge coefficient of the orifices are dependant on the inlet and outlet angle and the oil viscosity, while their length plays an little significant role. Although the short-tube type damping orifice was employed to induce a turbulent flow, their discharge coefficient decreases rapidly as the oil viscosity gets higher than 50mm2/s. Therefore, in order to determine the orifice size, satisfying the working temperature range of the door damper, the oil viscosity as well as the friction force on the damper piston should be kept within proper values. For the verification of the CFD analysis results the actual performance of a door damper was measured and compared with them.

Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV (Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동측정)

  • Ko, Choon-Sik;Yoon, Sang-Youl;Ki, Ho-Seong;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.587-593
    • /
    • 2004
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using micro particle image velocimetry(micro-PIV). For comparison, the experiments were repeated for deionized(DI) wale. instead of plasma. Both velocity profiles of plasma and do-ionized water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation, Rhodamine-B were mixed with plasma only for visualization of plasma droplet. With oil as the continuous phase and plasma as the dispersed phase, plasma droplet can be generated in a continuous phase flow at a Y-junction. For given experimental parameters, regular-sized droplets are reproducibly formed at a uniform flow conditions.

Screening of Essential Oil Repellents against the Organic Pear Pest Holotrichia parallela (Coleoptera: Scarabaeidae) (유기재배 과원에서 큰검정풍뎅이 방제를 위한 기피 살충자재 선발)

  • Song, Jang-Hoon;Md, Abdul Alim;Choi, Eu-Ddeum;Choi, Duck-Soo;Seo, Ho-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.259-268
    • /
    • 2018
  • The study investigated the efficacy of four different essential oils on the repellent responses of large black chafer (Holotrichia parallela) Motschulsky (Coleoptera: Scarabaeidae) in organic pear (Pyrus pyrifolia) orchards. Cinnamon, pine, peppermint, and eucalyptus oils were used, and the behavioral responses and repellent effects against H. parallela were investigated under laboratory and field conditions. Adult beetle responses to different oils were examined using a Y-tube olfactometer in the laboratory and four absorbent blocks with each oil in the field. The repellent responses rates of H. parallela were 100% for cinnamon oil; however, only 67% of adult beetles avoided peppermint and eucalyptus oil in the Y-tube olfactometer bioassay. In the field tests, the least damage to leaves was observed on trees treated with cinnamon oil, whereas the most damage was observed in the control (non-treated) trees and those treated with peppermint oil, followed by eucalyptus and pine oil. Therefore, cinnamon oil can be used as a repellent to avoid damage form large black chafers in organic pear orchards.

Development of Oil Content Meter for Oily Water Separator in Ship (선박 유수분리기용 유분검출기의 개발)

  • 황정웅;정병건;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.338-344
    • /
    • 2001
  • According to the MARPOL 73/78 of Convention, all ships should have oil filtering equipment and 15 ppm bilge which satisfy Requirements of MARPOL 73/78. This study is concerned with designing and manufacturing a prototype Oil content Meter(OCM) used in machinery area of ship. The prototype OCM is composed of two parts which are oil content sensing module and data processing unit. The oil content sensing module consists of infra-red light source, photo-diode light receivers, and a glass tube for bilge water sample. The data processing unit has a micro-processor as hard core and peripheral devices. The experimental results of prototype OCM and analysis of collected data reveal linear property between transmitted light and scattered light as long as the bilge water has low level content of oil. And this linear property leads to a oil content detecting method which is programmed and loaded into the data processing unit. The performance of the prototype OCM is compared with that of the commercial OCM in the market.

  • PDF

A study on prediction of oil concentration in the R-407C and R-410A refrigeration system (대체냉매 R-407C와 R-410A를 사용하는 냉동시스템의 오일농도 예측에 관한 연구)

  • 이종문;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.384-390
    • /
    • 1999
  • A vibrating U-Tube decimeter has been evaluated as a sensor for measuring the concentration of oil in the liquid line of a refrigeration system. Calibration and performance tests were conducted under simulated liquid-line conditions for R-407C/POE oil and R-410A/POE oil mixtures in oil concentration from 0 to 15 weight percent. Test temperatures ranged from 20 to 5$0^{\circ}C$. As a result of test, oil concentration correlations are presented in terms of specific gravity at each constant temperature. These equations enable to predict the oil concentration without any extraction of the mixture, and can be applied for R-407C/POE oil and R-410A/POE oil mixtures.

  • PDF

The Effects of Oil on Refrigerant Flow through Capillary Tubes (냉동기유가 모세관내의 냉매유량에 미치는 영향)

  • 홍기수;황일남;민만기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.791-801
    • /
    • 2000
  • An experimental study was conducted to analyze the effects of oil on refrigerant flow through adiabatic capillary tubes, and to develop a model for mass flow rates of refrigerant/oil mixture at various capillary tubes and flow conditions. Mass flow rates and the profiles of the pressures and temperatures along the capillary tubes was obtained with the oil concentration of R-22/SUNISO 4GS oil mixture at various test conditions. The flow trends as a function of geometry and flow conditions for pure refrigerant and refrigerant/oil mixture were similar in adiabatic capillary tubes. Mass flow rate of the refrigerant/oil mixture was less than that of pure refrigerant at the same test conditions.

  • PDF

A Study on the Measurement and Analysis of Bearing Reaction Forces of Marine Propulsion Shafting System using Strain-Gauge (스트레인 게이지를 이용한 선박용 추진 축계의 베어링 반력 측정에 관한 연구)

  • Kim, Chul-Woo;Lee, Yong-Jin;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Bearing damages by shaft misalignment have frequently been happened in marine ships. Specially. after stern tube bearing damage and failure for large crude oil carriers have been reported several times. However. the bearing reaction of the after stern tube bearing cannot be measured by jack-up test due to the hull structure condition. Therefore, when the jack-up test is used for the bearing reaction measurements, the bearing reaction for the after stern tube bearing obtained from the theoretical calculation method have to be used. In this paper, the shaft alignment on the large oil crude carrier is theoretically calculated and the differences between the calculated and actual installed bearing reaction values are compared. The bearing reactions for forward stern tube bearing and intermediate bearing are calculated by the simple formula using the strain gauge bending moments obtained from the measurements. Their reliability is confirmed by comparing the bearing reactions from jack-up test and the bearing reaction for after stern tube bearing is calculated by the same test. Also, the bearing reactions on the after stern tube bearing, forward stern tube bearing and intermediate shaft bearing under all operating conditions are calculated by using the bending moments obtained from the measurements and it is confirmed that the differences of the bearing reaction for all operating conditions are caused from hull deflection. The results of this study should prove useful for the future projects of the alignment calculation including the hull deflection effectiveness.

The Prediction of Minimum Miscible Pressure for CO2 EOR using a Process Simulator

  • Salim, Felicia;Kim, Seojin;Saputra, Dadan D.S.M.;Bae, Wisup;Lee, Jaihyo;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.606-611
    • /
    • 2016
  • Carbon dioxide injection is a widely known method of enhanced oil recovery (EOR). It is critical for the $CO_2$ EOR that the injected $CO_2$ to reach a condition fully miscible with oil. To reach the miscible point, a certain level of pressure is required, which is known as minimum miscibility pressure (MMP). In this study, a MMP prediction method using a process simulator is proposed. To validate the results of the simulation, those are compared to a slim tube experiment and several empirical correlations of previous literatures. Aspen HYSYS is utilized as the process simulator to create a model of $CO_2$/crude oil encounter. The results of the study show that the process simulator model is capable of predicting MMP and comparable to other published methods.

Parameters study on lateral buckling of submarine PIP pipelines

  • Zhang, Xinhu;Duan, Menglan;Wang, Yingying;Li, Tongtong
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.99-115
    • /
    • 2016
  • In meeting the technical needs for deepwater conditions and overcoming the shortfalls of single-layer pipes for deepwater applications, pipe-in-pipe (PIP) systems have been developed. While, for PIP pipelines directly laid on the seabed or with partial embedment, one of the primary service risks is lateral buckling. The critical axial force is a key factor governing the global lateral buckling response that has been paid much more attention. It is influenced by global imperfections, submerged weight, stiffness, pipe-soil interaction characteristics, et al. In this study, Finite Element Models for imperfect PIP systems are established on the basis of 3D beam element and tube-to-tube element in Abaqus. A parameter study was conducted to investigate the effects of these parameters on the critical axial force and post-buckling forms. These parameters include structural parameters such as imperfections, clearance, and bulkhead spacing, pipe/soil interaction parameter, for instance, axial and lateral friction properties between pipeline and seabed, and load parameter submerged weight. Python as a programming language is been used to realize parametric modeling in Abaqus. Some conclusions are obtained which can provide a guide for the design of PIP pipelines.

The Study of Synthetic Material Bush (Railko Bush) Application on Large Container Vessel (대형 컨테이너 선박의 합성수지계열 RAILKO BUSH 적용 연구)

  • Lim, Jae-Hun;Park, Kun-Woo;Kim, Kyung-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.46-53
    • /
    • 2008
  • Recently, the synthetic material stern tube bush has been applied by ship owner's requirement because the synthetic material has a merit. That is to say, when stern tube seal is damaged and sea water comes into stern tube, it can work without problem because of water lubricating property. However, the material also has a demerit of temperature rise problem when some factors meets on synthetic material, for example, not sufficient lubrication oil supply and not proper shaft alignment and so on. As known in the world, the RAILKO bush is rampant for synthetic material by some ship owner because of the above mentioned reason. However, the bush has several accidents on large container vessel. Unfortunately or fortunately our yard has a chance to apply the RAILKO bush owing to requirement of specific ship owner. Therefore, it is much more required to approach the accurate shaft alignment analysis. In line with this reason, we had a shaft alignment calculation considering hull deformation and hull flexibility (hull stiffness). Also, in the calculation, we had considered dynamic condition which is reflected he propeller thrust forces and moments and oil film stiffness on the shaft alignment calculation. According to he shaft alignment calculation, bearing slope was applied on the tern tube bush and was measured. The RAILKO bush should be applied the running in procedure according to maker's recommendation for performing the oil film on the bush surface. Finally, the vessels were delivered successfully without any problem with AILKO bush as shown on his paper.

  • PDF