• Title/Summary/Keyword: oil spill dispersant

Search Result 18, Processing Time 0.027 seconds

Standardization for Quantitative Analysis of Aromatic Hydrocarbon in Oil Spill Dispersant (유처리제의 방향족 탄화수소 정량방법에 대한 표준화)

  • Cho, Jong-Hoi;Lim, Yoon-Taek;Kim, Woo-Seok;Yun, Young-Ja;Kim, Shin-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.302-310
    • /
    • 2002
  • Demand for organic analysis increase as industries are growing and many products are spreaded in the daily life. One of many products is oil spill dispersant. It was used for oil accident in the ocean. When oil spill dispersant spread at the ocean, the petroleum in the ocean is dispersed. The oil spill dispersant is made of non ionic surfactant and petroleum oil. The non ionic surfactant disperse petroleum from oil accident. The other part is petroleum oil which has aromatic hydrocarbon. Because the aromatic hydrocarbon is cancerogenic material, it directly injure animals in the ocean. This cause the second pollution in the human body. Many oil accidents still are controlled by oil spill dispersant. Therefore quality control of the oil spill dispersant become important and this also demand for the exact quantitative analysis of aromatic hydrocarbon. Hereupon the first we develop separate petroleum oil from surfactant. The second standardize analytical method of aromatic hydrocarbon in the separated petroleum oil.

Toxicity on Laboratory Grown Plankton by the Oils Released from the Hebei Spirit Spill with Emphasis on a Dispersant Used in the Aftermath

  • Choi, Keun-Hyung;Lim, Sang-Min;Lee, Sung-Mi;Park, Gyung-Soo
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.389-397
    • /
    • 2010
  • The in vitro toxicities of three crude oils of the Hebei Spirit were examined on laboratory grown plankton, with a focus on the effects of a dispersant. The specific growth rate of phytoplankton and the mortalities of two zooplankton were measured in response to exposure to various concentrations of water accommodated oil, dispersant or both. The effects of the oils varied among the plankton, but were generally low within the range of the oil concentrations used, with little difference in toxicity among the three oils. Such low toxicity appeared to be associated with weathering of the crude oils. Exposure to the dispersant, however, dramatically increased the mortality of zooplankton, with complete inhibition of phytoplankton growth. No synergistic toxic effect was observed with the crude oil and dispersant combination. A better decision making process could be crafted for future application of dispersant in the event of an oil spill in Korean waters to better protect the marine plankton community from the excessive use of dispersant.

Effects of Oils and Dispersant on the Red Tide Organism Cochlodinium Polykrikoides (적조생물 Cochlodinium Polykrikoides에 대한 유류 및 유처리제의 영향)

  • Lee, Sam-Geun;Cho, Eun-Seob;Lim, Wol-Ae;Lee, Young-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.799-804
    • /
    • 2007
  • Oil spill caused severe effects on the marine fauna and flora due to direct contact of organisms with the oil and even in regions not directly affected by the spill. This study was conducted to understand the effects of the oil spill accidents and the use of dispersant on the red tide of Cochlodinium polykrikoides. Crude oil produced in Kuwait, bunker-C, kerosene and diesel oil, and a chemical dispersant produced in Korea, were added with a series of 10 ppb to 100 ppm in the f/2-Si medium at $20^{\circ}C$ under a photon flux from cool white fluorescent tubes of $100\;mol\;m^{-2}\;s^{-1}$ in a 14: 10 h L:D cycle for the culture of C. polykrikoides. In low concentrations of ${\leq}$ 1 ppm of examined oils no impact on the growth of C. polykrikoides was recorded, while in high concentration of ${\geq}$ 10 ppm, cell density was significantly decreased with the range of 10 to 80% in comparison with the control. The growth of C. polykrikoides after the addition of the dispersant and the mixtures combined with oils and a dispersant of ${\geq}$ 10 ppm appeared to decrease, whereas the growth of C. polykrikoides exposed to ${\leq}$ 100 ppb showed little serious impact. However, almost all the C. polykrikoides cells were died regardless of a dispersant and combined mixtures within a few days after the addition of high concentrations.

On the Effective Oil Spill Response Model along the Coastal Waters in Korea - Evaluation of the Regional Response Capabilities at the Port of Ulsan - (한국연안해역에서의 효과적인 유류오염방제 모델에 관한 연구)

  • Yun, Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.1-14
    • /
    • 1999
  • To find characteristics and areas of greater risk of oil spill at the coastal waters in Korea, some of risk factors were analyzed with historical data of oil spill and marine traffic. As a result, it is characterized that frequency of oil spill is increasing year by year and greatest percentage of spill source is fishing boat. It is proposed that the ports of Ulsan, Yeosu, Incheon and Pusan will be designated as primary area of risk as they have a higher risk of oil spills and its response authority is required to maintain appropriate regional response capability for prompt and effective response to a future spill incident. In addition, the regional response equipments at Ulsan are examined under a assumption of a medium size spill and it is found that the use of chemical dispersant can be an alternative when mechanical containment and recovery is not feasible in this area, and the existing response equipments may be appropriate to address that size of spill. However, the response authority is required to maintain more numbers of stronger boom for unsheltered waters and more quantity of concentrate dispersant to disperse all spilled oils on the water, furthermore the response authority should be prepared for a possible future catastrophic spill with sufficient equipments.

  • PDF

Importance of Convergency Researches for the Appropriate Application of Oil Dispersant (오일분산제 적용을 위한 융합연구의 필요성)

  • Oh, Kyeongseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.181-187
    • /
    • 2018
  • The historical consumption of oil dispersant was recorded during the protection plans after huge oil spill occurred in the Gulf of Mexico in 2010. As a well-known oil dispersant, Corexit 9500 was used and continuously blamed for the negative effects on environmental ecology. Nevertheless, US EPA still recognizes Corexit 9500 as a future oil dispersant that might be possibly sprayed again to oil slick. In order to develop alternative oil dispersants, it is important to impel the convergency works mainly from microbiologist, ecologist, environmentalist, chemist, and chemical engineer. In this paper, the major components of Corexit 9500 were introduced by chemical structures and physical properties. Presented were also the biodegradable process of dispersed oils and the possible candidates of biosurfactants.

Developmental Abnormalities in Zebrafish Angiogenesis with Chronic Exposure to Crude Oil and Dispersant

  • Lee, Suyeon;Kim, Kyoohyun;Kim, Hyunjin;Yeo, Sang-Yeob
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.10-18
    • /
    • 2013
  • Oil spills have occurred throughout the years of industrialization and represent a global challenge as they affect vast areas of the ocean. The toxicity of crude oil to aquatic organisms has been extensively investigated, but the potential impacts of crude oil on vertebrate development remain largely unknown. Here, we investigated the effects of dispersants used in treating a recent oil spill, as well as that of crude oil, on vertebrates by using the zebrafish (Danio rerio) model species, which has been widely used in empirical studies of both early embryonic development and adult physiology. Chronic exposure to crude oil resulted in marked developmental abnormalities, including pericardial edema, abnormal trunk vessel development, retardation of axonal branching, and abnormal jaw development. Embryonic development was affected more severely by exposure to the oil-dispersant combination than to the oil alone. Thus, the zebrafish in vivo model system suggests that dispersant treatment can have detrimental developmental effects on vertebrates and its potential impact on marine life, as well as humans, should be carefully considered in clean-up efforts at the site of an oil spill.

The Effectiveness of the Dispersant Use during the "Deepwater Horizon" Incident -REVIEW of the Proceedings from 2011 International Oil Spill Conference- (미국 멕시코만 기름유출사고에서 본 유처리제 사용의 효용성 고찰)

  • Cho, Hyun-Jin;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Once oil has spilled, oil spill responders use a variety of countermeasures to reduce the adverse effects of spilled oil on the environment. Mechanical methods of containment and recovery are preferred as the first response when the use of other methods fail or are ineffective. In these cases, the application of oil dispersants shall be use only as a last resort. While effectiveness of dispersants in removing oil form the sea surface is proven, the use of dispersants is controlled in almost all countries due to the toxicity of their active agents and the dispersed oil on the marine environment. However, according to reports, after dispersant application, no significant toxicity to fish or shrimp was observed in the field-collected samples. Moreover, the results also indicate that dispersant-oil mixtures are generally no more toxic to the aquatic test species than oil alone. During the Deepwater Horizon Incident, dispersants were applied to floating oil and injected into the oil plume at depth. These decisions were carefully considered by state and federal agencies, as well as BP, to prevent as much oil as possible from reaching sensitive shoreline habitats. Net Environmental Benefit Analysis for dispersant use assumed that dispersants appear to prevent long-term contamination resulting absence of oil in the substrate and will benefit marine wildlife by decreasing the risk of significant contamination to feathers or fur. Further study to use dispersants with scientific baseline is needed for our maritime environment which consistently threaten huge oil spill incidents occurrence.

A Study on the Required Stockpiles of Marine Oil Spill Response Equipments in the Busan Area (부산해역에서의 해양오염방제장비의 필요수량에 관한 연구)

  • 윤종휘;윤혁수;김동선
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.139-148
    • /
    • 2002
  • As the Busan harbor is getting susceptible to oil Pollution. the authors analyze the historical records of oil spill accidents and investigate the shoreline features. In addition. we evaluate the response capabilities and compute the required stockpiles of marine oil spill response with the worst case scenario in this area. As a result, it is shown that the recommendable oil spill response is to contain and mechanically recover all oils at sea surface in winter. while chemical dispersants can be used in summer with mechanical containment and recovery, and it is also found that off-shore booms of 3,000m and off-shore skimmers of 986MT/hour recovery rate should be stockpiled with 10,000∼60,000 liters of concentrate chemical dispersant and small amount of synthetic organic sorbents for possible use.

  • PDF

Effects of ultraviolet radiation on the toxicity of water-accommodated fraction and chemically enhanced water-accommodated fraction of Hebei Spirit crude oil to the embryonic development of the Manila clam, Ruditapes philippinarum

  • Lee, Chang-Hoon;Sung, Chan-Gyoung;Kang, Sin-Kil;Moon, Seong-Dae;Lee, Ji-Hye;Lee, Jong-Hyeon
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • The purpose of this study is to evaluate the effects of oil dispersant and ultraviolet (UV) radiation on the toxicity of crude oil. The toxicity of water-accommodated fraction (WAF) and chemically enhanced water-accommodated fraction (CEWAF) of Hebei Spirit crude oil was investigated in the embryo of the Manila clam, Ruditapes philippinarum with- and without ultraviolet radiation. The WAF and CEWAF with- and without UV radiation affected significantly the embryonic development of R. philippinarum. The EC50s of WAF without UV, WAF with UV, CEWAF without UV, and CEWAF with UV were 2.82, 0.79, 1.60, and 0.45 g/L, respectively. CEWAF was 1.6 times more toxic than WAF. UV radiation increased crude oil toxicity to 3.6 times for both WAF and CEWAF. The oil dispersant and UV radiation did not affect the acute toxicity to the embryo but retarded the period of embryonic development up to 26%. R. philippinarum proved to be a sensitive species to reflect the toxic effects of oil spill combined with oil dispersant and UV radiation. It is suggested that the chemical analyses on the WAF and CEWAF is important for the identification and quantitative explanation of the phototoxic compounds in crude oil.

The Study for Performance TestㆍVerification Standard, Form approval procedure(draft) of OSBA (생물정화제제의 성능시험ㆍ검정기준, 형식승인절차(안) 등에 관한 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.16-27
    • /
    • 2003
  • For the last decade, some 400 small and large oil spill accidents have occurred every year. Such accident blow a serious damage to the marine resource and ecosystem, which can't be estimated in terms of economic and environmental losses. The physical/chemical methods used currently may be effective at the initial stage of accidents, but they can't serve to remove the spilled oil completely. Moreover, the dispersant may lead to a secondary contamination detrimental to the lives inhabiting wet lands, beaches and tidal zone. Thus, a new decomposing technology Is required for the environmentally sensitive areas. Bioremediation is the active use of biological techniques to mitigate the consequences of a spill using biological processes and refers both of stimulation of pollutant biodegradation and/or to enhance ecosystem recovery Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF