• Title/Summary/Keyword: oil release

Search Result 226, Processing Time 0.025 seconds

Microcosm Study for Bioremediation of Oil-Contaminated Pebble Environments (자갈로 구성된 미소환경에서 미생물제제에 의한 유류분해)

  • Sim, Doo-Suep;Sohn, Jae-Hak;Kim, Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.101-107
    • /
    • 1998
  • Biological treatment of Arabian light crude oil-contaminated pebble was investigated in laboratory microcosms after supplementation with inorganic nutrients and oil-degrading microorganisms. Glass columns ($10cm{\times}20cm$) were used as microcosms and each microcosm was filled with pebbles of diameter less than 40 mm. After initial oil contamination of 2.4% (w/v), Inipol EAP-22 or slow release fertilizer (SRF) was added as inorganic nutrients and microorganisms were sprayed over pebbles. When $C_{17}$/pristane and $C_{18}$/phytane ratios were used as a marker for oil biodegradation, both ratios for microcosm supplemented with SRF and microorganisms were the lowest (below detectable range) after 92 days. Elimination of oil by abiotic processes, however, were minimal with decrease of $C_{17}$/pristane and $C_{18}$/phytane ratios from 3.55 and 2.41 to 3.06 and 1.50, respectively. The numbers of heterotrophic and oil-degrading microorganisms, and biological activity (dehydrogenase activity) corresponded to the course of biodegradation activities in all microcosms. During the whole experimental period, there was no significant nutrient deficiency only in the microcosm with SRF and microorganisms. It seemed that a continuous supply of inorganic nutrients using SRF was the most important factor for the successful performance of biological treatment in oil-contaminated pebbles.

  • PDF

Development of Polymeric Blend Microspheres from Chitosan-Hydroxypropylmethyl Cellulose for Controlled Release of an Anti-Cancer Drug

  • Reddy, Lakshmi C. Narayana;Reddy, Rama Subba P.;Rao, Krishna K.S.V.;Subha, M.C.S.;Rao, Chowdoji K.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • Chitosan (CS) and hydroxypropylmethyl cellulose (HPMC) blend microspheres were prepared by water-in-oil emulsion technique and were loaded with an anti-cancer drug 5-fluorouracil (5-FU). CS-HPMC microspheres were characterized by Fourier transform infrared spectroscopy to confirm the cross-linking reaction. Scanning electron microscopy (SEM) was also used to assess the surface morphology of particles prepared. The quantity of release of 5-FU from the microspheres have been studied in terms of blend composition and amount of cross-linking agent. Differential scanning calorimetry and X-ray diffraction techniques indicated a uniform distribution of 5-FU particles in microspheres, whereas SEM suggested the spherical structure of the microspheres with slight rough surface. The in vitro drug release indicated that the particle size and release kinetics depend upon blend composition, amount of cross-linking agent used and amount of 5-FU present in the microspheres.

Prenatal effect of pyrantel pamoate on several hematological parameter of offspring in mice

  • Abdulwahab.A.Noorwall;Ghazi M. Al-Hachim;Award -Omar
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.87-91
    • /
    • 1986
  • In attempt to develop a drug delivery system using serum albumin microspheres, bovine serum albumin microspheres containing antitumar agent. Cytarabine, were prepared. The shape, surface characteristics, size distribution, behavior of in vivo distribution, drug release behavior, and degradation of albumin microsphers in animal liver issue homogenate and proteolytic enzyme were investigated. The shape of albumin microspheres was spherical and the surface was smooth and compact. The size distribution of the albumin microspheres was effected by dispertion forces during emulsification and albumin concentration. Distribution of albumin microspheres after imtravenous administration in rabbit was achieved immediately. In vitro, albumin microsphere matrix was so hard that it retained most of cytarabine except initial burst during the first 10 minutes, and the level of drug release during the initial burst was affected by heating temperature, drug/albumin microsphere matrix was so hard that it retained most of cytarabine except initial burst during the first 10 minutes, and the level of drug release during the initial burst was affected by heating temperature, drug/albumin concentration ratio and size distribution. After drug release test, the morphology of albumin microspheres was not changed. Albumin microsphere matrix was degraded by the animal liver issue homogenate and proteolytic enzyme. The degree of degradation was affected by heating temperature.

  • PDF

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.

Drug Release and Skin Irritancy of Poloxamer Gel Containing Kojic Acid (코지산을 함유한 폴록사머 겔 제제의 약물방출 및 피부자극성)

  • Park, Eun-Woo;Cho, Seong-Wan;Kim, Dong-Sup;Choi, Ki-Hwan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 1998
  • Low toxicity, reverse thermal gelation and high drug loading capabilities suggest that poloxamer 407 gels have great potential as a topical drug delivery system. Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of skin irritancy due to its acidic pH. Poloxamer gels of different polymer contents were formulated to overcome the problem and compared to the cream type formulations of either w/o/w multiple emulsion cream or o/w type emulsion cream. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solutions. Drug release from w/o/w multiple emulsion cream was controlled by oil membrane, showing the apparent zero order release kinetics. The KA release from the poloxamer gels was also controlled by the gel matrix, showing that drug release increased linearly as KA contents increase, but decreased exponentially as the polymer contents increase. In the skin irritancy test, the primary irritancy index(PII) of poloxamer gel base was lower than those of multiple emulsion cream base and o/w cream. Depending on KA contents or polymer contents in the gel. PH values in poloxamer gels were ranged from 1.3 to 2.0, which are interpreted as low or negligible irritation on skin. There was a good correlation between the log value of flux in drug release and PII value in skin irritation. It was possible to conclude that the poloxamer gels containing KA might be a good candidate for an antimelanogenic topical delivery system by virtue of the controlled release of the drug and the reduced skin irritancy.

  • PDF

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (용매증발법에 의한 부피바카인 microsphere의 제조 및 평가)

  • Kwak, Son-Hyok;Hwang, Sung-Joo;Lee, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Various bupivacaine-loaded microspheres were prepared from poly (d,l-lactide) (PLA) or poly (d,l-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. PLA and PLGA microspheres were prepared by w/o/w and w/o/o multiple emulsion solvent evaporation, respectively. The effects of process conditions such as emulsification speed, emulsifier type, emulsifier concentration and internal/external phase ratio on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency was higher in the microspheres prepared by w/o/o multiple emulsion than that by w/o/w multiple emulsion method, because the solubility of bupivacaine HCI was decreased in oil phase compared with water phase. The prepared microspheres had an average diameter between 1 and $2\;{\mu}M$ in all conditions of two methods. In morphology studies the PLA microspheres showed an irregular shape and smooth surface, but PLGA microspheres had a spherical shape and smooth surface. The release pattern of the drug from microspheres was evaluated on the basis of the burst effect and the extent of the release after 24h. The in vitro release of bupivacaine HCl from microspheres showed a large initial burst release and $60{\sim}80%$ release within one day in all conditions of two methods. The extents of the burst release against PLA and PLGA microspheres were $30{\sim}50%$ and $50{\sim}80%$ within 20min, respectively. This burst release seems to be due to the smaller size of microspheres and the solubility of drug in water.

  • PDF

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model (듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1111-1116
    • /
    • 2011
  • Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

A Study on Wall Materials for Flavor Encapsulation (향기 성분의 미세캡슐화를 위한 피복물질에 대한 연구)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1563-1569
    • /
    • 1999
  • For the encapsulation of flavor compounds, maltodextrin (MD), gum arabic (GA) alkenylsuccinated modified starch (MS) and gellan gum were chosen for wall materials and their combination was optimized. Five fruit flavor compounds having boiling point of $90{\sim}200^{\circ}C$ were selected as core materials and their mixture was incorporated with rapeseed oil (flavor mixture to oil = 1 : 4). Flavor compound mixture to wall material ratio of 1 : 4 was selected, and the amount of maltodextrin was fixed to 30% of the wall material mixture. Gellan gum was selected as an additional wall material to increase emulsion stability. The optimum combination ratio of the wall material mixture for maximal total oil retention and minimal surface oil content is : 30.0% MD ; 26.4% GA ; 39.6% MS ; 4% gellan gum.

  • PDF

Comparative Analysis on Combustion Characteristics of Diesel Oil and Biodiesel Blends in Dl Diesel Engine (Using Soybean Oil) (직접분사식 디젤기관에서 디젤유와 바이오디젤 혼합유의 연소특성에 대한 비교 연구 (대두유를 중심으로))

  • Lim, J.K.;Choi, S.Y.;Cho, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.29-34
    • /
    • 2009
  • Recently, we have a lot interest in a sudden rise of oil prices and a change weather for the earth warmming, so, development of new alternative fuels need in order to spare fossil fuel and reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the combustion characteristics between neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were tested using four stroke, direct injection diesel engine, especially this biodiesel was produced from soybean oil at our laboratory. This analysis showed that cylinder pressures, the rate of pressure rises and the rate of heat releases were decreased as the blending ratios of biodiesel to diesel oil increased because of lower heating value of biodiesel in spite of increased oxygen content in biodiesel.

  • PDF

Effectiveness of Bioremediation on Oil-Contaminated Sand in Intertidal Zone

  • Oh, Young-Sook;Sim, Doo-Suep;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.437-443
    • /
    • 2003
  • Bioremediation technologies were applied to experimental microcosms, simulating an oil spill in a lower intertidal area. Three treatments (oil only, oil plus nutrients, and oil plus nutrients and microbial inocula) were applied, and each microcosm was repeatedly filled and eluted with seawater every 12 h to simulate tidal cycles. To minimize washing-out of the inoculum by the tidal cycles, microbial cells were primarily immobilized on diatomaceous earth before they were applied to the oiled sand. Oil degradation was monitored by gravimetric measurements, thin layer chromatography/flame ionization detector (TLC/FID) analysis, and gas chromatography (GC) analysis, and the loss of oil content was normalized to sand mass or nor-hopane. When the data were normalized to sand mass, no consistent differences were detected between nutrient-amended and nutrient/inoculum-amended microcosms, although both differed from the oil-only microcosm in respect of oil removal rate by a factor of 4 to 14. However, the data relative to nor-hopane showed a significant treatment difference between the nutrient-amended and nutrient/inoculum-treated microcosms, especially in the early phase of the treatment. The accelerating effect of inoculum treatment has hardly been reported in studies of oil bioremediation in the Tower intertidal area. The inoculum immobilized on diatomaceous earth seemed to be a very effective formulation for retaining microbial cells in association with the sand. Results of this study also suggest that interpretation of the effectiveness of bioremediation could be dependent on the selection of monitoring methods, and consequently the application of various analytical methods in combination could be a solution to overcome the limitations of oil bioremediation monitoring.