• Title/Summary/Keyword: oil recovery work method

Search Result 5, Processing Time 0.021 seconds

A Proposition on Reasonable Termination Procedure in Remaining-oil Recovery Work from a Sunken Tanker in Korean Territory (국내 침몰유조선 잔존유 회수작업의 합리적 종료절차 제안)

  • Kang, Kwang-Gu;Shim, Yoo-Taek;Kang, Sin-Young
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • In case of sunken tankers, remaining-oil recovery operation should be conducted due to possible oil spill accident. However, the deep sea operation make difficulties in checking the completion of remaining oil recovery process, therefore the work termination procedure is very important. In this paper, a reasonable work termination procedure through the comparison and analysis of two cases(Youil No.1 and Osung No.3, Kyung-Shin) which were performed in different method, using disparate equipment. By investigating previously applied methods and techniques, work speed, safety and expenses were compared. The proposed ending procedure of the remaining-oil recovery project is to recover the remaining oil from each cargo tanks and to clean up such tanks whilst an independent surveyor proceeds to a confirmation procedure whereby said surveyor checks out whether any remaining oil exists by putting a stick in each cleaned up tanks and opening up the hatch cover of the tanks or the top place of the tanks to confirm the cleanness of oil. Such procedure shall be done through discussion by the ordering party, contractor and the independent surveyor all together with a flexible application.

Net Analyte Signal-based Quantitative Determination of Fusel Oil in Korean Alcoholic Beverage Using FT-NIR Spectroscopy

  • Lohumi, Santosh;Kandpal, Lalit Mohan;Seo, Young Wook;Cho, Byoung Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.208-220
    • /
    • 2016
  • Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage "soju". Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: The results revealed that the NAS-PLSR model with selected variables ($R^2_{\upsilon}=0.95$, RMSEV = 100ppm) did not outperform the NAS-PCR model (($R^2_{\upsilon}=0.97$, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.

Optimization and characterization of biodiesel produced from vegetable oil

  • Mustapha, Amina T.;Abdulkareem, Saka A.;Jimoh, Abdulfatai;Agbajelola, David O.;Okafor, Joseph O.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.147-163
    • /
    • 2013
  • The world faces several issues of energy crisis and environmental deterioration due to over-dependence on single source of which is fossil fuel. Though, fuel is needed as ingredients for industrial development and growth of any country, however the fossil fuel which is a major source of energy for this purpose has always been terrifying thus the need for alternative and renewable energy sources. The search for alternative energy sources resulted into the acceptance of a biofuel as a reliable alternative energy source. This work presents the study of optimization of process of transesterification of vegetable oil to biodiesel using NaOH as catalyst. A $2^4$ factorial design method was employed to investigate the influence of ratio of oil to methanol, temperature, NaOH concentration, and transesterification time on the yield of biodiesel from vegetable oil. Low and high levels of the key factors considered were 4:1 and 6:1 mole ratio, 30 and $60^{\circ}C$ temperatures, 0.5 and 1.0 wt% catalyst concentration, and 30 and 60 min reaction time. Results obtained revealed that oil to methanol molar ratio of 6:1, tranesetrification temperature of $60^{\circ}C$, catalyst concentration of 1.0wt % and reaction time of 30 min are the best operating conditions for the optimum yield of biofuel from vegetable oil, with optimum yield of 95.8%. Results obtained on the characterizzation of the produced biodiesel indicate that the specific gravity, cloud point, flash point, sulphur content, viscosity, diesel index, centane number, acid value, free glycerine, total glycerine and total recovery are 0.8899, 4, 13, 0.0087%, 4.83, 25, 54.6. 0.228mgKOH/g, 0.018, 0.23% and 96% respectively. Results also indicate that the qualities of the biodiesel tested for are in conformity with the set standard. A model equation was developed based on the results obtained using a statistical tool. Analysis of variance (ANOVA) of data shows that mole ratio of ground nut oil to methanol and transesterification time have the most pronounced effect on the biodiesel yield with contributions of 55.06% and 9.22% respectively. It can be inferred from the results various conducted that vegetable oil locally produced from groundnut oil can be utilized as a feedstock for biodiesel production.

A study on the Beneficiation of Muscovite Ore (백운모광의 품위향상에 관한 연구)

  • Lee, Jae-Jang;Choi, Soo-Yong
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.29-41
    • /
    • 1989
  • A general study on the upgrading of mica minerals which are mainly found in pegmatite deposits was carried out for the purpose of developing a technique for recovering mica in form of comercial grade products. By the way the grade one of about 5~6% $K_2O$ still is not developed. The target of this research work is to be establish a process for the efficient concentration of muscovite, containing more than 10% $K_2O$. The tests are applied to incraese the recovery and grade of concentrates in term of variations of conditions. The test sample consists of mainly muscovite and gangue mineral such as quartz, pyrite and chlorite. Decantation and shaking table tests were ineffective to up-grade this low grade one, but flotation method gave satisfactory result. By means of grade one, but flotation method gave satisfactory result. By means of grindability tests, an optimum result could be obtained from the sample ground to -48mesh feed size. The flotation result indicates that the dodecyl ammonium chloride used as a cationic collector is effective on the negatively charged surface, while the sodium dodecyl sulfate as an anionic collector is effective on the positively charged surface. Muscovite was floated by petroleum sulfonate as well as amine type collector, it also floated by MIBC as well as pine oil frother under well condition. Fine muscovite concentrates of about 10.68% $K_2O$ was obtained with 22.4% yield, by decantation, the muscovite concentrates of 10.10% $K_2O$ was obtained with 23.54% yield, by table concentration, the muscovite concentrates of 11.51% $K_2O$ was obtained with 23.0% yield by flotation.

  • PDF

An Experimental Analysis of Hydrate Production using Multi-Well, Plate-Type Cell Apparatus (다중공 평판형 셀기기에서 하이드레이트 생산실험 분석연구)

  • Bae, Jaeyu;Sung, Wonmo;Kwon, Sunil
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.304-309
    • /
    • 2007
  • In this study, the "Multi Well Plate-type cell Apparatus" was designed and setup for performing the producing experiments of methane hydrate by depressurization, heat stimulating methods. In order to characterizing the producing mechanism of hydrate through porous materials, the experiments for various producing methods have been conducted with the aid of the apparatus which has high permeability. In the experimental result of depressurization method, the pressure is temporarily increased unlikely conventional gas reservoir due to the sourcing effect of hydrate dissociation in the pore. Meanwhile, the temperature is decreased because of the endothermic reaction while hydrate is dissociated. In the experimental results of heat stimulating method, the dissociation in depressurization method is more slowly processed than that in thermal method, and hence, its gas production is lower. In the case of production right after heating, hydrate is dissociated only near injecting point and the permeability becomes greater at that area only. It infers that the more gas is produced during relatively earlier producing period. Since then, the hydrate is more slowly dissociated than the case of production after heating and soaking. This time, the performances of pressure and production obtained by thermal method have been analyzed in order to investigate the effect of soaking time on gas recovery. As a result, the gas recoveries in the case of 2 min and 4 min soaking are higher than case in 6 min soaking. This is reason that hydrate is reformed due to the decrease of temperature. It is expected that the experimental results obtained in this work may be more clearly explained by utilizing the lower permeable porous system with the greater hydrate saturation.