• Title/Summary/Keyword: oil palm shell

Search Result 12, Processing Time 0.028 seconds

Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete

  • Huda, Md. Nazmul;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Darain, Kh Mahfuz ud;Obaydullah, M.;Hosen, Md. Akter
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2017
  • Recent trend is to use the lightweight concrete in the construction industry because it has several advantages over normal weight concrete. The Lightweight concrete can be produced from the industrial waste materials. In South East Asian region, researchers are very keen to use the waste materials such as oil palm shell (OPS) and palm oil clinker (POC) from the palm oil producing industries. Extensive research has been done on lightweight concrete using OPS or POC over the last three decades. In this paper the aggregate properties of OPS and POC are plotted in conjunction with mechanical and structural behavior of OPS concrete (OPSC) and POC concrete (POCC). Recent investigation on the use of crushed OPS shows that OPSC can be produced to medium and high strength concrete. The density of OPSC and POCC is around 20-25% lower than normal weight concrete. Generally, mechanical properties of OPSC and POCC are comparable with other types of lightweight aggregate concrete. It can be concluded from the previous study that OPSC and POCC have the noteworthy potential as a structural lightweight concrete.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia (인도네시아 오일 팜 바이오매스 잠재량 평가)

  • Ahn, Byoung-Jun;Han, Gyu-Seoung;Choi, Don-Ha;Cho, Sung-Taig;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.231-243
    • /
    • 2014
  • In this study, the potential of biomass, which is generated from oil palm cultivation and crude palm oil (CPO) production of Indonesia was assessed in the aspect of energy content. The types of oil palm biomass were classified on the basis of the cultivation stage and the CPO production stage. In the cultivation stage, biomass is considered to be produced from its' root, trunk and frond. Other possible biomass resources such as empty fruit bunch (EFB), palm kernel shell (PKS) and fiber were included in the CPO production stage. As results, total biomass from damaged plantation area of Indonesia was estimated to be annually from 3 million to 16 million tons in 2011. From CPO mills, approximately 49 million tons/yr of biomass residues were estimated to be annually occurred. Their total energy content from each biomass source in cultivation stage was analyzed to be from 593,000 to 3,197,000 TOEs in terms of gross calorific value. In the case of CPO mills, around 22.7 million TOEs was estimated to be potential energy producible by biomass based on gross calorific value of dry basis. If moisture content considered, net calorific value was analyzed to be decreased to 16.3 million TOEs. Based on the results, the total energy contents of all oil palm biomass were estimated to be up to 25,919,000 TOE in terms of gross calorific value. CPO : Crude Palm Oil, EFB : Empty Fruit Bunch, FFB: Fresh Fruit Bunch, PKS : Palm Kernel Shell, OPF : Oil Palm Frond, PKOC : Palm Kernel Oil Cake, ISPO : Indonesia Sustainable Palm Oil Commission, TOE : Tone of Oil Equivalent.

Study on the Pozzolan Reaction Degree of Palm Oil Fuel Ash as a Mineral Admixture for Sustainable Concrete (POFA를 혼입한 시멘트의 포졸란 반응에 관한 연구)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.335-336
    • /
    • 2010
  • This paper presents experimentally investigated the effects of pozzolan made from various by-Product materials on mechanical properties of mortar. Fly ash(FA), slag (BFS), and palm oil fuel ash (POFA) were partially used to replace Portland cement. The results suggest that mortars containing FA, BFS, and POFA can be used as pozzolanic materials in making concrete with 28day compressive strength. After curing, the mortar containing 10-30% FA or POFA, and 30% BFS exhibited compressive strengths that of the original Portland cement (OPC). The use of FA, POFA, and BFS to partially replace Portland cement has evaluation method of the Assessed Pozzolan-activity index.(API)

  • PDF

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Sim, Sung-Woong;Lee, Gyeong-Sun;Cho, In-Jun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.

Study of Oil Palm Biomass Resources (Part 2) - Manufacturing Characteristics of Pellets Using Oil Palm Biomass- (오일팜 바이오매스의 자원화 연구 II - 오일팜 바이오매스의 펠릿 제조 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Kim, Sung-Ho;Sim, Sung-Woong;Yim, Su-Jin;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFB) and palm kernel shell (PKS) was used as raw materials for making pellets. Hardwood sawdusts were also mixed with EFB and PKS for making pellets. For improving a bad forming behavior in a pelletizer, 1 to 3 per cent of corn starch based on oven-dried weight biomass was added. The starch contributed to the decrease of dust generation in addition to the improvement of forming capability during pellet forming. Heating values of every pellets made of EFB and PKS were higher than 4,300 kcal/kg for the first grade pellet, irrespective of addition of sawdusts. However, the pellets made of EFB and PKS had ash contents over 3 per cent, which made it impossible to be applied for home use. Instead, they could be applied for industrial use. For studying their combustion characteristics, the pellets from the mixtures of EFB, PKS and sawdusts were analyzed using thermal gravimetric analyzer (TGA). From the TGA results, thermal decomposition of EFB and PKS occurred following three including endothermic reaction and dehydration, devolatilization of the major chemical components, and finally combustion of residual lignin and char.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Lee, Ji-Young;Cho, Hu-Seung;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

An Experimental Study on the Initial Physical Properties of Cement Mortar with POFA (POFA 혼입률에 따른 시멘트 모르타르의 초기 물성에 관한 실험적 연구)

  • Wi, Kwang-Woo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.122-123
    • /
    • 2015
  • Demands for the replacement materials of cement have been increasing due to social problems such as CO2 reduction and exhaustion of resource. Recently industrial by-products, for example GGBFS and fly ash, have been used as an admixture. However Studies on POFA have been insufficient. POFA, which is used in this study, was obtained from burning of palm oil shell and husk from a southern part of Malaysia. In this study, early compressive strength and porosity of cement mortar with POFA are measured, and appropriate fraction of POFA is 10%. In terms of porosity, POFA is used as a filer in mortar. Later, activity index of POFA and long-term experiments are needed.

  • PDF