• Title/Summary/Keyword: oil leakage

Search Result 241, Processing Time 0.022 seconds

Effect of Seed Size on Seed Germination and Growth Characteristics in Safflower (Carthamus tinctorius L.) (홍화의 종자 크기별 발아 및 생장특성 분석)

  • Lim, Jung Dae;Park, Hae Il;An, Tae Jin;Lim, Ju Jin;Kim, Sung Hyop;Yoo, Bo Ra;Kim, Eun Hye;Chung, Ill Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.6
    • /
    • pp.415-420
    • /
    • 2012
  • In order to evaluate the effect of seed weight on different aspect of safflower (Carthamus tinctorius L.) seed germination and growth characteristics. Quantity of sinapine leaked from seed was greater as the viability of seeds was dropped by the time elapsed of seed aging model and long storage condition in safflower (Carthamus tinctorius L.). The cultivar of safflower was Jin-Sun and the seeds that are separated to three different weights of small, middle, and large were used in this experiment. Large seeds revealed the highest germination percent, coleoptiles fresh weight, coleoptiles dry weight, radicle fresh weight and 1000 seed weights than other seed weight. Seed weight had little effect on yield while seed number exerted a positive influence. Interestingly, yield per plant and its major components, number of capsules and capsule weights, revealed a negligible relationship with oil content.

A Field Study of Surfactant Enhanced In-Situ Remediation using Injection Wells and Recovery Trench at a Jet Oil Contaminated Site (항공유 오염 지역에서 주입정과 회수트렌치를 이용한 원위치 토양세정법 현장 적용)

  • Lee, Gyu-Sang;Kim, Yang-Bin;Jang, Jae-Sun;Um, Jae-Yeon;Song, Sung-Ho;Kim, Eul-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.13-21
    • /
    • 2012
  • This study reports a surfactant-enhanced in-situ remediation treatment at a test site which is located in a hilly terrain. The leakage oils from a storage tank situated on the top of the hill contaminated soils and groundwater in the lower elevation. Sixteen vertical injection wells (11 m deep) were installed at the top of the hill to introduce 0.1-0.5 vol.% of non-ionic Tween-80 surfactant. The contaminated area that required remediation treatment was about $1,650\;m^2$. Two cycles of injecting surfactant solution followed by water were repeated over approximately 7.5 months: first cycle with 0.5 month of surfactant injection followed by 3 months of water injection, and second cycle with 1 month of surfactant followed by 3 months of water injection. The seasonal fluctuation in groundwater table was also considered in the selection of periods for surfactant and water injection. The results showed that the initial Total Petroleum Hydrocarbon (TPH) concentration of 1,041 mg/kg (maximum 3,605 mg/kg) was reduced significantly down to 76.6 mg/kg in average. After 2nd surfactant injection process finished, average TPH concentration of soils was reduced to 7.5% compared to initial concentration. Also, average BTEX concentration of soils was reduced to 10.8%. This resultes show that the surfactant enhanced in-situ remediation processes can be applicable to LNAPL contaminated site in field scale.

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

A Study on the Applicaton of Electrical Resistivity Survey in the Contaminated Soil and Groundwater Site (토양 및 지하수 오염지역에 대한 전기비저항탐사의 적용성 연구)

  • Chae, Seungheon;Lee, Sangeun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.525-539
    • /
    • 2020
  • A site containing buried solid waste and treated water and oil storage containers from a leather manufacturing plant was studied through soil and groundwater pollution and electrical resistivity surveys with the aim of identifying areas polluted by leachate generated by landfilling with leather waste and leakage wastewater. It was found that TPH and Zn exceeded environmental standards for soil pollution and, for leachate and groundwater, Cr(VI) concentrations exceeded standard levels for groundwater quality. An electrical resistivity survey was used to elucidate soil and groundwater pollution characteristics and diffusion pathways. Ten survey lines were set up with an electrode spacing of 5 m in a dipole-dipole array. The hydraulic characteristics of soil determined by groundwater contamination surveys matched well the low-resistivity-anomaly zones. Electrical resistivity surveys of areas containing contaminated soil and groundwater that have irregular strata due to waste reclamation are thus useful in highlighting vertical and horizontal pollutant diffusion pathways and in monitoring contaminated and potentially contaminated areas.

Analysis of Safety Regulation and Chemical Reactivity of Hypergolic Propellant (접촉점화성 추진제 안전기준 및 상호반응성 분석)

  • Eungwoo Lee;Ahntae Shin;Sangyeon Cho;Byeongmun Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.108-115
    • /
    • 2023
  • Although hydrazine is an excellent liquid propellant, caution is required during storage and handling due to its high toxicity and reactivity. Safety guidelines should be established in consideration of the chemical reactivity by unintended leakage. In this study, the status of hydrazine facilities at launch site and safety standards for storing and handling were investigated and then, the reactivity between chemicals and hydrazine was analyzed. As a result of the analysis, hydrazine has reactivity with the exception of fuel oil. This paper emphasizes the imperative nature of constructing a dedicated hydrazine storage facility. Ensuring compatibility between hydrazine and the materials used in storage containers and handling equipment is crucial to prevent undesired reactions that could compromise safety. It was intended to be used as basic data to secure the range safety when handling hydrazine.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Necessity of Standardization and Standardized Method for Substances Accounting of Environmental Liability Insurance (환경책임보험 배출 물질 정산의 표준화 필요성 및 산출방법 표준화)

  • Park, Myeongnam;Kim, Chang-wan;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.1-17
    • /
    • 2018
  • Related incidents and accidents are frequent after 2000 years, such as the outbreak of the Taian peninsula crude oil spillage and Gumi hydrofluoric acid leakage accident. In the wake of such environmental pollution accidents, Consensus has been formed to enact legislation on liability for the compensation of environmental pollution in 2014 and the rescue, and has been in force since January 2016. Therefore, in the domestic insurance industry, the introduced environmental liability insurance system needs to be managed through the standardization formula of a new insurance model for managing the environmental risk. This study has been carried out by the emergence of a safe insurance model with a risky nature of the risk type, which is one of the services of the knowledge base. The verification of the six assurance media on the occurrence of environmental pollution such as chemical, waste, marine, soil, etc. is expressed through semantic interoperability through this possible ontology. The insurance model was designed and presented by deducing the relationship between the amount of money and the amount of money that was written in the area of existing expertise, In order to exclude the possible consequences, the concept of abstract is conceptualized in the form of a customer, and a plan for the future development of an ontology-based decision support system is proposed to reduce the cost and resources consumed every year. It is expected that standardization of the verification standard of the mass of mass will minimize errors and reduce the time and resources required for verification.

Conceptual Design of the Fuel Injection Valve Tester for ME-LGI Marine Engine by Using System Engineering (ME-LGI 선박엔진용 연료분사밸브 테스터 개발을 위한 시스템 엔지니어링 기반 개념 설계)

  • Noh, Hyonjeong;Kang, Kwangu;Bae, Jaeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • As environmental regulations have been strengthened and high fuel efficiency has been in demand in recent years, the number of ships using natural gas as a fuel is increasing. The demand for ships using LPG or methanol, which are emerging as eco-friendly vessel fuels, is also increasing. In this perspective, ME-LGI engines using LPG or methanol as a fuel have attracted considerable attention. Ships equipped with an ME-LGI engine are required to check the reliability of the fuel injection valve during shipping. This means that the development of a fuel injection valve tester is essential for the commercialization of ME-LGI engine. This study conducted the conceptual design of a fuel injection valve tester for ME-LGI engines using a system engineering process in the order of requirements analysis, functional analysis, and design synthesis. In the requirement analysis stage, the operating process of fuel injection valve was analyzed, and the necessity of checking the sealing oil leakage was then derived. In the functional analysis stage, the functions and flow of them were defined at each functional level. In the design synthesis stage, the equipment for each function was set and the process block diagram based on it was derived. In addition, preliminary risk analysis was performed as a part of system analysis and control, and safety measures were added to the conceptual design. This study is expected to be a good reference material for the concept design of other systems in the future because it shows the application process of a system engineering process to the conceptual design in detail.

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF