• Title/Summary/Keyword: oil in water emulsion

Search Result 386, Processing Time 0.028 seconds

A Study on the Adsorption at Oil-Water Interface and the Emulsion Stabilizing Properties of Soy Protein Isolate (분리 대두단백질의 기름-물 계면흡착 과 유화안정성에 관한 연구)

  • Kim, Young-Sug;Cho, Hyung-Yong;Cho, Eun-Kyung;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.468-474
    • /
    • 1986
  • The emulsifying properties of soy protein isolate were measured at various conditions, and the relationships between the emulsifying properties and solubility, viscosity, hydrophobicity, protein adsorption, the tension at water-oil interface were investigated. The emulsifying properties are minimum at the isoelectric point(pI), and the effect of pH parallels its effect on protein solubility. The emulsifying activity is increasing up to $50^{\circ}C$ and then is somewhat decreasing above that temperature, while the emulsion stability is continuously decreasing. Except for phosphates, the salts cause the decrease of the emulsifying properties. The hydrophobicity is increasing as the temperature increases and decreasing somewhat as pH gets lower. However, it is increasing substantially at pH below the pI. The maximum protein adsorption at the water-oil interface is 0.78, 0.47, and $0.33mg/m^2$ at pH 2, 7, and 4, respectively. The tension at water-oil interface is 19.76 dyne/cm in the absence of soy protein, whereas it is decreasing to 11.45-18.08 dyne/cm in the presence of the protein.

  • PDF

Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages

  • Uzlasir, Turkan;Aktas, Nesimi;Gercekaslan, Kamil Emre
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.551-562
    • /
    • 2020
  • Beef fat was replaced with cold press pumpkin seed oil (PSO; 0%, 5%, 15%, and 20%) in the production of bologna-type sausages. A value of pH, water-holding capacity (WHC), jelly-fat separation, emulsion stability and viscosity values were determined in meat batters. Thiobarbituric acid reactive substances (TBARS), color, and textural characteristics (TPA, shear test, penetration test) were determined in end-product at 1, 7, 14, 21, and 28 days of storage at 4℃. The pH values were varied between 6.06 and 6.08. With the increase in the level of PSO in meat batters, there was a significant increase in WHC, jelly-fat separation and viscosity values (p<0.05) while a significant decrease in emulsion stability (p<0.05). TBARS values of sausages were found to be significantly higher than in the control group (p<0.05), and this trend continued during storage. Increasing of PSO level were caused a significant increase in L* and b* values while a decrease in a* value (p<0.05). Hardness, adhesiveness and chewiness values were significantly reduced whereas cohesiveness and resilience values increased (p<0.05). Maximum shear force and work of shear was significantly decreased as the level of PSO increased (p<0.05). Hardness, work of penetration and the resistance during the withdrawal of the probe values (penetration tests) increased significantly with the increase in the level of PSO (p<0.05). These results indicate that PSO has potential to be use as a replacement of animal-based fats in the production of bologna-type sausages.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

Effect of local anesthetics iontophoresis (이온도입법을 이용한 국소마취 효과)

  • Lee In-Hak
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.79-85
    • /
    • 1999
  • The study was to detemine the effect concentration of lidocaine Hcl $2\%$ iontophoresis for duration of local anesthesia. Emla $5\%$(lidocaine + prilocaine) cream is an oil-in water emulsion system in which the oil phase consists of a cutectic mixture of the base farms of lidocaine and prilocaine in the ratio 1:1. Forty college student between the age of $20.57\pm1.94$, weight of $58.50\pm9.17Kg$, height $166.87\pm8.98 Cm$ were in this study. The results was as follows. 1. Lidocaine Hcl $2\%$ iontophoresis local anesthesia time is $7.15\pm2.86$ minutes. 2. Emla $5\%$ cream application to local anesthesia time is $57.32\pm40.26$ minutes.

  • PDF

Development of SS-AG20-loaded Polymeric Microparticles by Oil-in-Water (o/w) Emulsion Solvent Evaporation and Spray Drying Methods for Sustained Drug Delivery

  • Choi, Eun-Jung;Bai, Cheng-Zhe;Hong, A-Reum;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3208-3212
    • /
    • 2012
  • Controlled drug delivery systems employing microparticles offer lots of advantages over conventional drug dosage formulations. Microencapsulation technique have been conducted with biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) for its adjustable biodegradability and biocompatibility. In this study, we evaluated two techniques, oil-in-water (o/w) emulsion solvent evaporation and spray drying, for preparation of polymeric microparticles encapsulating a newly synthesized drug, SS-AG20, for the long-term drug delivery of this low-molecular-weight drug with a very short half-life. Drug-loaded microparticles prepared by the solvent evaporation method showed a smoother morphology; however, relatively poor encapsulation efficiency and drastic initial burst were discovered as drawbacks. Spray-dried drug-loaded microparticles had an imperfect surface with pores and distorted portions so that its initial burst was critical (70.05-87.16%) when the preparation was carried out with a 5% polymeric solution. By increasing the concentration of the polymer, the morphology was refined and undesirable initial burst was circumvented (burst was reduced to 35.93-74.85%) while retaining high encapsulation efficiency. Moreover, by encapsulating the drug with various biodegradable polymers using the spray drying method, gradual and sustained drug release, for up to 2 weeks, was achieved.

Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels

  • Kim, Hyun-Wook;Setyabrata, Derico;Lee, Yong-Jae;Kim, Yuan H. Brad
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.315-324
    • /
    • 2018
  • The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide ($Ca(OH_2)$) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (p=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (p>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.

Nanoemulsions containing Vitamin E acetate prepared by PIC(phase inversion composition) methods: Factors affecting droplet sizes

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.602-611
    • /
    • 2013
  • We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.

SPF Measurement and Cytotoxicity of Sunscreen Agents in Cosmetic (화장품에서 UV 차단제의 피부 자극성과 SPF 측정)

  • Kim, In-Young;Kang, Sam-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 1998
  • Consumers have recently preferred to purchase extensive UV intercepting products, which are waterproof and free from side effects on skin. During the testing of cytotoxicity (in-vitro) in neutral red (NR) method, cell survival ratio of UV-B interceptors decreased to just above 0.08 w/v%, and it was observed that the UV-A interceptors the ratio also decreased to just above 0.06 w/v%. In addition patch-tests of inorganic UV interceptors resulted in no skin irritation even below 10.0 and 11.25. In absorption curves, UV-B was most suitable for octyl methoxycinnamate (OMC) and UV-A for butyl methoxy dibenzoylmethane (BMDM). For this reason, $Nylonpoly^{TM}$ UVA/UVB the material of OMC and BMDM coated with Nylon & polyethylene, was used as the organic UV interceptor. Zinc oxide (ZnO) and titanium dioxide ($TiO_2$) was used as inorganic UV interceptors. The appropriate mixture ratio of ZnO and $TiO_2$ was 6 to 4:6% of ZnO, 4% of $TiO_2$ and 5% of $Nylonpoly^{TM}$ UVA/UVB were all combined and added to our sunscreen cream. The SPF value of in-vitro was 38.9. In practical application, each sun protection factor (SPF) duration of oil-in-water (O/W) emulsion and water-in-silicone (W/S) emulsion containing sunscreen cream of the same content showed that W/S type of sunscreen cream was 5 times as durable as the other. Therefore, this product is fit for use in swimming, climbing or skiing. This research is to minimize skin trouble caused by UV interceptors and to make one with proper softness, skin safety and UV intercepting efficiency.

  • PDF

Bioremedation of petrolium pollution (유류오염의 미생물학적 제어)

  • 이상준;차미선;이근희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.02a
    • /
    • pp.14-28
    • /
    • 2001
  • As basic study for purpose bioremedation in oil-contaminated environment, Primarily, we isolated biosurfactant producer- strains utilized of oil-agar plate, and measured surface tension and emulsifying activity. We investigated in oil-contaminated soil and sea water. In this laboratory, Pseudomonas sp. EL-012S strain isolated from oil-contaminated soil was able to product novel biosurfactant under the optimal culture condition. Its condition was n-hexadecane 2.0%, NH$_4$NO$_3$0.4%, Na$_2$HPO$_4$0.6%, KH$_2$PO$_4$0.4%, MgSO$_4$.7$H_2O$ 0.02%, CaCl$_2$.2$H_2O$ 0.001%, FeSO.7$H_2O$ 0.001%, initial pH 7.0 and aeration at 3$0^{\circ}C$, respectively. This biosurfactant was produced in both late-exponential and early-stationary phase. The biosurfactant from Pseudomonas sp. EL-012S was composed of carbohydrate, lipid and protein. The purified-biosurfactant was examined two (biosurfactant type I, II) with the silica gel G60 column chromatography and the purified biosurfactant confirmed thin layer chromatography, high performed liquid chromatography and gas chromatography. The biosurfactant type I involved in carbohydrate-lipid-protein characteristics lowered surface tension of water to 27dyne/cm and interfacial tension 4.5dyne/cm aginst to n-hexadecane and the biosurfactant type B involved in carbohydrate lipid characteristics lowered surface tension of water to 30dyne/cm and interfacial tension 8dyne/cm against to n-hexadecane. Specially type I had the properties such as strong emulsifying activity, emulsion stability, pH-stability, thermo-stability, high cleaning activity and forming ability.

  • PDF

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (용매증발법에 의한 부피바카인 microsphere의 제조 및 평가)

  • Kwak, Son-Hyok;Hwang, Sung-Joo;Lee, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Various bupivacaine-loaded microspheres were prepared from poly (d,l-lactide) (PLA) or poly (d,l-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. PLA and PLGA microspheres were prepared by w/o/w and w/o/o multiple emulsion solvent evaporation, respectively. The effects of process conditions such as emulsification speed, emulsifier type, emulsifier concentration and internal/external phase ratio on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency was higher in the microspheres prepared by w/o/o multiple emulsion than that by w/o/w multiple emulsion method, because the solubility of bupivacaine HCI was decreased in oil phase compared with water phase. The prepared microspheres had an average diameter between 1 and $2\;{\mu}M$ in all conditions of two methods. In morphology studies the PLA microspheres showed an irregular shape and smooth surface, but PLGA microspheres had a spherical shape and smooth surface. The release pattern of the drug from microspheres was evaluated on the basis of the burst effect and the extent of the release after 24h. The in vitro release of bupivacaine HCl from microspheres showed a large initial burst release and $60{\sim}80%$ release within one day in all conditions of two methods. The extents of the burst release against PLA and PLGA microspheres were $30{\sim}50%$ and $50{\sim}80%$ within 20min, respectively. This burst release seems to be due to the smaller size of microspheres and the solubility of drug in water.

  • PDF