• Title/Summary/Keyword: oil displacement activity

Search Result 3, Processing Time 0.018 seconds

In situ isolation and characterization of the biosurfactants of B. Subtilis

  • Akthar, Wasim S.;Aadham, Mohamed Sheik;Nisha, Arif S.
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • Crude oils are essential source of energy. It is majorly found in geographical locations beneath the earth's surface and crude oil is the main factor for the economic developments in the world. Natural crude oil contains unrefined petroleum composed of hydrocarbons of various molecular weights and it contains other organic materials like aromatic compounds, sulphur compounds, and many other organic compounds. These hydrocarbons are rapidly getting degraded by biosurfactant producing microorganisms. The present study deals with the isolation, purification, and characterization of biosurfactant producing microorganism from oil-contaminated soil. The ability of the microorganism producing biosurfactant was investigated by well diffusion method, drop collapse test, emulsification test, oil displacement activity, and blue agar plate method. The isolate obtained from the oil contaminated soil was identified as Bacillus subtilis. The identification was done by microscopic examinations and further characterization was done by Biochemical tests and 16SrRNA gene sequencing. Purification of the biosurfactant was performed by simple liquid-liquid extraction, and characterization of extracted biosurfactants was done using Fourier transform infrared spectroscopy (FTIR). The degradation of crude oil upon treatment with the partially purified biosurfactant was analyzed by FTIR spectroscopy and Gas-chromatography mass spectroscopy (GC-MS).

Analysis of Surface Displacement of Oil Sands Region in Alberta, Canada Using Sentinel-1 SAR Time Series Images (Sentinel-1 SAR 시계열 영상을 이용한 캐나다 앨버타 오일샌드 지역의 지표변위 분석)

  • Kim, Taewook;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • SAGD (Steam-Assisted Gravity Drainage) method is widely used for oil recovery in oil sands regions. The SAGD operation causes surface displacement, which can affect the stability of oil recovery plants and trigger various geological disasters. Therefore, it isimportant to monitor the surface displacement due to SAGD in the oil sands region. In this study, the surface displacement due to SAGD operations of the Athabasca oil sands region in Alberta, Canada, was observed by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique to the Sentinel-1 time series SAR data acquired from 2016 to 2021. We also investigated the construction and expansion of SAGD facilitiesfrom Landsat-7/8 time seriesimages, from which the characteristics of the surface displacement according to the oil production activity of SAGD were analyzed. Uplift rates of 0.3-2.5 cm/yr in the direction of line of sight were observed over the SAGDs and their vicinity, whereas subsidence rates of -0.3--0.6 cm/yr were observed in areas more than several kilometers away from the SAGDs and not affected by oil recovery activities. Through the analysis of Landsat-7/8 images, we could confirm that the SAGDs operating after 2012 and showing high oil production activity caused uplift rates greater than 1.6 cm/yr due to the subsurface steam injection. Meanwhile, very small uplift rates of several mm per year occurred over SAGDs which have been operated for a longer period of time and show relatively low oil production activity. This was probably due to the compression of reservoir sandstone due to continuous oil recovery. The subsidence observed in areas except for the SAGDs and their vicinity estimated to be a gradual land subsidence caused by melting of the permafrost. Considering the subsidence, it was expected that the uplift due to SAGD operation would be greater than that observed by the PSInSAR. The results of this study confirm that the PSInSAR can be used as an effective means for evaluating productivity and stability of SAGD in the extreme cold regions.

Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media

  • Vanavil, B.;Perumalsamy, M.;Rao, A. Seshagiri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1229-1243
    • /
    • 2013
  • In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at $37^{\circ}C$ and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.