• Title/Summary/Keyword: oil contents

Search Result 1,233, Processing Time 0.037 seconds

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hae-Seong;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.37-37
    • /
    • 2009
  • Due to their high corrosion resistance and improved mechanical properties super-duplex stainless steel (SDSS) are extensively used in petrochemical plants such as facilities in modern oil platform and off-shore process equipment. It is well known that the best mechanical and corrosion resistance properties of super-duplex stainless steel are obtained with a microstructure having approximately equal amounts of austenite and ferrite. And it is also known that sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride affected adversely their properties. Therefore these phases must be avoided. However, effects of succeeding weld thermal cycle on the change of microstructure of weldment at multi-pass weld were not seldom experimentally researched. Therefore in the present work, the change of weldmetal microstructure and the effect of microstructure on pitting corrosion property at $40^{\circ}C$ by succeeding each weld thermal cycle were researched. The thermal history of root side was measured experimentally and the change of microstructure of root weld according to thermal cycle of each weld layer was evaluated. And the relationship between microstructure of root weld and pitting corrosion property at $40^{\circ}C$ was also investigated. Results of the present work are show as below. 1. The ferrite contents of root weld are gradually reduced by succeeding weld thermal cycle. 2. The 2nd phases such as sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride are increased gradually by succeeding weld thermal cycle. 3. The pitting corrosion was detected in root weld part and weight loss by pitting corrosion is increased in proportional to the time exposed over $600^{\circ}C$ of the root weld. 4. The succeeding weld thermal cycles affect the microstructure of the former weldments and promote the formation of 2nd phases. That is, the more succeeding welds are added, the more 2nd phases are gradually increased. Consequently, it is thougth that this adversely affects pitting corrosion property.

  • PDF

The Physicochemical Characteristics of Marinated Beef Galbi under Different Cooking Conditions (양념 소갈비의 조리과정에서의 물리화학적 특성 평가)

  • Hong, Sang-Pil;Kim, Young-Ho;Lee, Nam-Hyouck;Heo, Yeong-Uk
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.1
    • /
    • pp.78-88
    • /
    • 2013
  • Marinated beef galbi is a traditional Korean dish cooked with soy sauce, pear juice, onion, sesame oil, and sugar. However, there are many differences in beef galbi, including flavor and physicochemical aspects, depending on cooking conditions. Therefore, the physicochemical characteristics of marinated beef galbi prepared through various recipes was evaluated for its effects on pH, texture, aging, proteolysis, heating conditions, cooking time, and flavor compounds (pyrazines, IMPs, or FAAs). There were significant differences in salt concentration (0.8~3.03%), pH (4.89~6.22), and solid soluble contents (1.34-6.31 Brix) between recipes in this study. In the Pearson assay for sensory evaluation, overall preference correlated well with texture (a well-known sensory attribute in meat evaluation). Controlling the pH of meat through soaking in lemon solution, alkali water, phosphate, and baking powder solution, improved water holding capacity as much as 9 to 15% compared with the control. The myofibril index (MFI) of marinated meat stored at $4^{\circ}C$ increased 32% with 24 hours of aging and reached 39% at 48 hours of aging, and its fragmentation was observed through microscopy. SDS-PAGE showed hydrolysis of acid-soluble collagen by the pear juice, possibly related to meat tenderness. On the basis of surface temperature, the cooking time was estimated to be 8 minutes with pan heating at $170^{\circ}C$, 6 minutes at $270{\sim}300^{\circ}C$, and 4 minutes with charcoal at $700{\sim}900^{\circ}C$. Different pyrazine compounds, such as 2-methyl-3-phenylpyrrol(2,3-b) pyrazine (the typical product of the browning reaction) was mainly detected, and IMP (one of the main taste compounds in beef) was in higher amounts with the charcoal treatment, potentially related to its flavor preference among treatments. Our results demonstrate an effective case study and cooking system for beef galbi.

Effect of Frying Methods under Reduced Pressures on the Quality of French Fries (감압 튀김 방법이 감자튀김의 품질에 미치는 영향)

  • Lee, Bo-Bae;Lee, Jin-Won;Park, Jang-Woo;Lee, Hyun-Joo;Chung, Yoon-Kyung
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • This study investigated the quality changes of French fries when cooked under a lower pressure than the ambient atmosphere. This was derived from the concept of boiling point depression of water under reduced pressure. The pressure during the frying process was controlled at measures of 760 mmHg, 560 mmHg, 360 mmHg, or 160 mmHg. The frying apparatus was manufactured to cook foods up to $200^{\circ}C$ and to have a valve to control the pressure. French fries were cooked at $180^{\circ}C$ for 4 minutes. After each pressure level was achieved, the French fries were dipped into a frying oil bath and cooked for 4 minutes. The quality changes, including moisture content, starch gelatinization, textural and sensory properties of the French fries were measured. The moisture contents were decreased at all 4 pressure levels after frying. Starch gelatinization was not significantly different among the samples. The hardness of French fries cooked at 160 mmHg was the best. In addition, the sensory properties including brown color, taste, and crispiness of French fries cooked at 160 mmHg was the best. The overall preference was higher when the frying pressure was lower.

Optimization of Manufacturing Condition for Fried Garlic Flake and the Physicochemical Properties (튀긴 마늘 flake 제조조건의 최적화 및 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.805-811
    • /
    • 2012
  • This study was carried out in order to optimize the manufacturing condition of fried garlic flakes as well as to investigate the physicochemical properties of the flakes. Fried garlic flake samples were prepared as follows: garlic was sliced by a thickness of 1.5 mm, 2.0 mm, 2.5 mm, which were measured by a thickness gage. The samples were fried in vegetable oil under different temperatures of $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$. The compression strength depending on the height (h) was measured in order to find the thickness effect by the rheometer (force control: 50 N, h: 3.25 mm). Moreover, the sample with 1.5 mm thickness showed crisp phenomena of the split compared with the crush shape of the 2.0 mm and 2.5 mm thick samples. The result of strength for time dependence showed a sample with a thickness of 1.5 mm, which was measured 5~9 times more than the 2.0 mm and 2.5 mm thick samples. We thought the reason that the 1.5 mm sample had less response power equivalent to compression force than the other samples. Alliin has been found to affect the immune responses in the blood, it is a derivative of the amino acid cysteine and is also quite heat stable. The LC system with a UV detection at 210 nm consists of a separation on a Zorbax TMS column and isocratic elution with water and ACN as a mobile phase. The alliin contents of raw and fried garlic flake under $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$ were 18.10 mg/mL, 14.0 mg/mL, 11.6 mg/mL and 11.1 mg/mL, respectively. The decrement of alliin content under different temperature was a small quantity hence, we confirmed that the increasing manufacturing temperature was not affected by the alliin content. Examining for the particle structure of fried garlic flakes by a polarization microscope, the color of the sample treated at $160{\sim}170^{\circ}C$ was pure yellow. Furder, the fiber shaped particle, which has an effect on the tough texture, almost did not appear compared to the different temperature conditions. Finally, the sensory test for the preference of fried garlic flake under different conditions was carried out and the scores for various sensory characteristics were surveyed. According to the physicochemical measurements and sensory evaluation, we confirmed that the optimum manufacturing condition of fried garlic flake was 1.5 mm thick at a temperature of $160{\sim}170^{\circ}C$.

Growth Characteristics of Ginseng Seedlings as Affected by Mixed Nursery Soil under Polyethylene Film Covered Greenhouse (비닐하우스에서 상토의 조성에 따른 묘삼의 생장특성)

  • Park, Hong Woo;Jang, In Bae;Kim, Young Chang;Mo, Hwang Sung;Park, Kee Choon;Yu, Jin;Kim, Jang Uk;Lee, Eung Ho;Kim, Ki Hong;Hyun, Dong Yun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.363-368
    • /
    • 2014
  • This study was conducted to find out the optimum composition of nursery soil for raising seedling of ginseng (Panax ginseng C. A. Meyer). Total 9 kinds of raw materials were used such as peat-moss, perlite, leaf mould, rice bran, gull's guano, castor-oil plant bark, palm bark, cow manure and chicken manure for optimum composition of nursery soil in ginseng. Occurrence of damping-off in ginseng was lowered about 50% in nursery soil type 1, 2 and 4 than in other types nursery soil in June, and occurrence rate of rusty root also lowest in nursery soil type 1. As the salinity of nursery soil increased, so did the occurrence of physiological disorder in ginseng seedling. The cause of salinity increasing in nursery soil has closely relation to $NO_3-N$, $P_2O_5$ and $Na^+$ content. Plant height, root length, diameter and weight were longer and heavier in nursery soil type 1 (mixing ratio of peat-moss, perlite and leaf mould was 50 : 20 : 30 based in volume) than in other types of nursery soil. So nursery soil type 1 was selected for raising seedling of ginseng. pH and electric conductivity (EC) of selected nursery soil type 1 was 5.55 and 0.13 dS/m. Contents of $NO_3-N$ and $P_2O_5$ were 21.0 and 40.0 mg/L, and $K^+$ 0.36, $Ca^{2+}$ 3.38, $Mg^{2+}$ 2.01 and $Na^+$ $0.09cmol^+/L$, respectively.

Efficient Triplet-triplet Annihilation-based Upconversion in Vegetable Oils (식물성 오일에서 구현되는 삼중항-삼중항 소멸법에 의한 Upconversion 분석)

  • Shin, Sung Ju;Choe, Hyun Seok;Park, Eun-Kyoung;Kyu, Hyun;Han, Sangil;Kim, Jae Hyuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.639-645
    • /
    • 2016
  • We herein report efficient triplet-triplet annihilation upconversion (TTA-UC) achieved in various non-toxic and non-volatile vegetable oils as a UC media using platinum-octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA) as a sensitizer and acceptor, respectively. Green-to-blue UC was readily achieved from PtOEP/DPA solution in vegetable oils with the quantum yield of 8% without any deoxygenation process. The UC efficiency was found to be significantly dependent on the contents of unsaturated hydrocarbon in vegetable oils and viscosity of the solution, as well. Though the Stern-volmer constant and quantum yield in vegetable oils were measured to be lower than those measured in the deaerated organic solvent, the quenching efficiency was still high enough to be 93%. In the sunflower oil, the UC threshold intensity ($I_{th}$) was approx. $100mW/cm^2$, which is far larger than the sunlight intensity, but we believe that the UC achieved in non-toxic and air-saturated media was still highly applicable to nontraditional visualization techniques such as bioimaging.

Stable Isotope and Biomarker Characteristics of Organic Matter from the Drilling Core Sediments, Jeju Basin (제주분지 시추시료에 포함된 유기물의 안정동위원소 및 생물표기화합물 특성)

  • Cheong, Tae-Jin;Lee, Young-Joo;Kim, Ji-Hoon;Oh, Jae-Ho;Park, Myong-Ho;Song, Hoon-Young
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.623-633
    • /
    • 2007
  • Stable isotope and biomarker analyses were carried out for the organic sediments from the exploratory wells in the Jeju Basin in order to understand the characteristics of organic matter. Organic matter in Geobuk-1, Okdom-1, JDZ VII-1 and VII-2 well is predominantly originated from land plants rather than marine algae according to carbon $({\delta}^{13}C_{org})$ and nitrogen $({\delta}^{15}N_{org})$ isotopic compositions. In the Geobuk-1, geochemical characteristics such as carbon $({\delta}^{13}C_{org})$, nitrogen ($({\delta}^{15}N_{org})$ and TOC contents are obviously changed by the depth 2,400 m, which is likely due to the change of origin of organic matter, sedimentary process or sedimentary environments. Analysis of the saturated fraction of the bitumen suggests the contribution of migrated oil to the indigenous bitumen from the samples 2,509, 2,833 and 3,163 m of the JDZ YII-1 and 3,253 m of the Geobuk-1 well. However, this characteristics can be derived from the contribution of the original organic matter. Based on the biomarker analysis, the samples from the Okdom-1 and Geobuk-1 appear to represent sedimentary organic matter of similar composition, that is rotatively immature, and which was probably deposited in the fluvio-deltaic setting with minor offshore marine influence. The samples from JDZ VII-1 appear to have been deposited in a more terrestrially dominated setting.

Growth Performance and Nutrient Composition in the White-spotted Flower Chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae) Fed Agricultural By-product, Soybean Curd Cake (비지박 첨가 먹이원 급여에 따른 흰점박이꽃무지 유충의 생육과 영양성분 변화)

  • Song, Myung-Ha;Han, Moon-Hee;Lee, Seokhyun;Kim, Eun-Sun;Park, Kwan-Ho;Kim, Won-Tae;Choi, Ji-Young
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1185-1190
    • /
    • 2017
  • Insects are gaining recognition as an alternative source of protein. As a result, more and more domestic farms have begun mass rearing of edible insects. In order to produce high quality insects, studies on the development of safe and nutritious feed sources are needed. Given the cost of rearing insects, agricultural and industrial by-products are good sources for feed. The efficient utilization of these by-products can help in reducing the cost of production and preventing environmental pollution. In the current study, Citrus unshiu peel (CP), soybean curd cake (SCC), soybean oil meal (SOM), and brewers dried grain (BDG) were investigated for their effects on larval growth and development of Protaetia brevitarsis. Interestingly, the feed with 10% SCC increased larval weight by 3.5 times. For the larval period, the group of 10% SCC was significantly shorter than the control. Furthermore, minerals such as Zn, Ca, K, Mg, Na, and P were recorded to be high in 10% SCC. A total of 17 amino acids were present in 10% SCC, of which tyrosine and arginine were predominant. The heavy metal contents were very small amounts or not detected in any of the investigated groups. These findings provided a scientific basis for the utilization of soybean curd cake as a nutritional feed source to promote larval growth and produce quality insects.

Anti-obesity and Anti-inflammation Effects of Cheonggukjang in C57Bl/6 mice with High Fat Diet Induced Obesity (고지방식이로 유도된 비만 마우스에서 청국장의 항비만 및 항염증 효과)

  • Kim, Jiyoung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1357-1368
    • /
    • 2017
  • The purpose of this study was to investigate the anti-obesity and anti-inflammation effect of the cheonggukjang (a soybean paste fermented for only a few days) in diet induced obesity mice. Weight gain was significantly decreased in the mice fed cheonggukjang compared High Fat Diets (HFD). The HFD plus cheonggukjang (CGJ) were also effective in improving the lipid metabolism. The levels of plasma triglyceride, cholesterol, ALT, AST, leptin, glucose, and insulin were significantly lower in CGJ than HFD group (p<0.05). The adiponectin level of CGJ group was significantly increased compared to the HFD group (p<0.05). In the CGJ group, the mRNA expression of adipogenic genes in the liver and adipose tissues, which are transcription factors crucial for adipogenesis, were significantly suppressed (p<0.05). The number of $CD11b^+F4/80^+$ T cells, $Gr-1^{int}CD11b^{high}$ cells, and $Gr-1^{int}CD11b^{high}$ cells were significantly higher in HFD group than CGJ group (p<0.05). The size of adipocyte was significantly reduced in CGJ group compared to HFD group. In addition, the contents of liver lipid droplets were significantly downregulated in the CGJ mice than HFD mice (p<0.05). Collectively, these data suggest the novel function of cheonggukjang in modulating adipogenesis through an immune function-alteration involving downregulation of adipogenic transcription factors and macrophage activation.

Physicochemical Properties of Oxidized Waxy Maize Starches with Sodium Hypochlorite (찰옥수수 산화전분의 이화학적 특성)

  • Chung, Man-Gon;Jeon, Young-Seung;Lee, Sur-Koo;Park, Jong-Moon;Lim, Bun-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-48
    • /
    • 1998
  • Physicochemical properties of waxy maize starch and oxidized waxy maize starch with sodium hypochlorite $(0{\sim}60\;mg\;CL_2/g\;starch,40^{\circ}C,\;pH\;10,\;3.0\;hr)$ were studied. As sodium hypochlorite concentration was increased, the content of crude lipid and crude protein of the oxidized starch were decreased. And crude protein content and whiteness was considered to show negative regression. However, the crude ash content of the oxidized starch increased significantly with oxidation and bore a positive regression to the chlorine content. There was a progressive increase in the carboxyl content with increasing oxidant level. After pasting in hot water and cooling, viscosity of the oxidized starches were drastically lower than that of native starch . As carboxyl contents of the oxidized starch increased, the solubility and swelling power was increased. When waxy maize starch treated with 0, 1.5, 3.0 and 6.0% sodium hypochlorite, temperature of initial gelatinization of oxidized starch was shown to 65, 65, 60 and $50^{\circ}C$, respectively. The oxidized waxy maize starches also form clearer pastes. Water binding capacity of the oxidized starch decreased as the degree of carboxyl group substitution increased. Waxy maize starch has polygonal and some round granules which range from about 3.7 to $20\;{\mu}m$ in diameter. Surface appearance of the waxy maize starch became rough when oxidized with sodium hypochlorite. When homogenate of the oxidized waxy maize starch solution and corn germ oil was stored under room temperature for 24 hours, the emulsion stability was considered to depend on starch concentration and degree of substitution.

  • PDF