Browse > Article
http://dx.doi.org/10.14478/ace.2016.1102

Efficient Triplet-triplet Annihilation-based Upconversion in Vegetable Oils  

Shin, Sung Ju (Department of Chemical and Environmental Engineering, Pusan National University)
Choe, Hyun Seok (Department of Chemical and Environmental Engineering, Pusan National University)
Park, Eun-Kyoung (Department of Chemical and Environmental Engineering, Pusan National University)
Kyu, Hyun (Department of Chemical and Environmental Engineering, Pusan National University)
Han, Sangil (Department of Chemical Engineering, Changwon National University)
Kim, Jae Hyuk (Department of Chemical and Environmental Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.6, 2016 , pp. 639-645 More about this Journal
Abstract
We herein report efficient triplet-triplet annihilation upconversion (TTA-UC) achieved in various non-toxic and non-volatile vegetable oils as a UC media using platinum-octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA) as a sensitizer and acceptor, respectively. Green-to-blue UC was readily achieved from PtOEP/DPA solution in vegetable oils with the quantum yield of 8% without any deoxygenation process. The UC efficiency was found to be significantly dependent on the contents of unsaturated hydrocarbon in vegetable oils and viscosity of the solution, as well. Though the Stern-volmer constant and quantum yield in vegetable oils were measured to be lower than those measured in the deaerated organic solvent, the quenching efficiency was still high enough to be 93%. In the sunflower oil, the UC threshold intensity ($I_{th}$) was approx. $100mW/cm^2$, which is far larger than the sunlight intensity, but we believe that the UC achieved in non-toxic and air-saturated media was still highly applicable to nontraditional visualization techniques such as bioimaging.
Keywords
upconversion; vegetable oils; anti-stokes emission; triplett-triplet annihilation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Peng, X. Guo, X. Jiang, D. Zhao, and Y. Ma, Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films, Chem. Sci., 7, 1233-1237 (2016).   DOI
2 P. B. Merkel and J. P. Dinnocenzo, Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films, J. Lumin., 129, 303-306 (2009).   DOI
3 M. Penconi, F. Ortica, F. Elisei, and P. L. Gentili, New molecular pairs for low power non-coherent triplet-triplet annihilation based upconversion: dependence on the triplet energies of sensitizer and emitter, J. Lumin., 135, 265-270 (2013).   DOI
4 T. Ogawa, N. Yanai, A. Monguzzi, and N. Kimizuka, Highly efficient photon upconversion in self-assembled light-harvesting molecular systems, Sci. Rep., 5, 10882 (2015).   DOI
5 J. H. Kim and J. H. Kim, Encapsulated triplet-triplet annihilation- based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis, J. Am. Chem. Soc., 134, 17478-17481 (2012).   DOI
6 R. R. Islangulov, D. V. Kozlov, and F. N. Castellano, Low power upconversion using MLCT sensitizers, Chem. Commun., 30, 3776-3778 (2005).
7 T. F. Schulze, J. Czolk, Y. Cheng, B. Fuckel, R. W. MacQueen, T. Khoury, M. J. Crossley, B. Stannowski, K. Lips, U. Lemmer, A. Colsmann, and T. W. Schmidt, Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion, J. Phys. Chem. C, 116, 22794-22801 (2012).   DOI
8 T. F. Schulze and T. W. Schmidt, Photochemical upconversion: present status and prospects for its application to solar energy conversion, Energy Environ. Sci., 8, 103-125 (2015).   DOI
9 T. N. Singh-Rachford and F. N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation, Coord. Chem. Rev., 254, 2560-2573 (2010).   DOI
10 W. Zhao and F. N. Castellano, Upconverted emission from pyrene and di-tert-butylpyrene using $Ir(ppy)_3$ as triplet sensitizer, J. Phys. Chem. A, 110, 11440-11445 (2006).   DOI
11 T. N. Singh-Rachford, A. Haefele, R. Ziessel, and F. N. Castellano, Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes, J. Am. Chem. Soc., 130, 16164-16165 (2008).   DOI
12 Q. Liu, B. R. Yin, T. Yang, Y. Yang, Z. Shen, P. Yao, and F. Li, A general strategy for biocompatible, high-effective upconver-sion nanocapsules based on triplet-triplet annihilation, J. Am. Chem. Soc., 135, 5029-5037 (2013).   DOI
13 J. H. Kim, F. Deng, F. N. Castellano, and J. H. Kim, High efficiency low-power upconverting soft materials, Chem. Mater., 24, 2250-2252 (2012).   DOI
14 J. H. Kim and J. H. Kim, Triple-emulsion microcapsules for highly efficient multispectral upconversion in the aqueous phase, ACS Photonics, 2, 633-638 (2015).   DOI
15 A. Monguzzi, F. Bianchi, A. Bianchi, M. Mauri, R. Simonutti, R. Ruffo, R. Tubino, and F. Meinardi, High efficiency up-converting single phase elastomers for photon managing applications, Adv. Energy Mater., 3, 680-686 (2013).   DOI