• Title/Summary/Keyword: oil components

Search Result 1,042, Processing Time 0.024 seconds

Improved immune responses and safety of foot-and-mouth disease vaccine containing immunostimulating components in pigs

  • Choi, Joo-Hyung;You, Su-Hwa;Ko, Mi-Kyeong;Jo, Hye Eun;Shin, Sung Ho;Jo, Hyundong;Lee, Min Ja;Kim, Su-Mi;Kim, Byounghan;Lee, Jong-Soo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.74.1-74.13
    • /
    • 2020
  • Background: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. Objectives: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. Methods: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. Results: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. Conclusions: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.

Oil Price Forecasting : A Markov Switching Approach with Unobserved Component Model

  • Nam, Si-Kyung;Sohn, Young-Woo
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • There are many debates on the topic of the relationship between oil prices and economic growth. Through the repeated processes of conformations and contractions on the subject, two main issues are developed; one is how to define and drive oil shocks from oil prices, and the other is how to specify an econometric model to reflect the asymmetric relations between oil prices and output growth. The study, thus, introduces the unobserved component model to pick up the oil shocks and a first-order Markov switching model to reflect the asymmetric features. We finally employ unique oil shock variables from the stochastic trend components of oil prices and adapt four lags of the mean growth Markov Switching model. The results indicate that oil shocks exert more impact to recessionary state than expansionary state and the supply-side oil shocks are more persistent and significant than the demand-side shocks.

Production of Volatile Oil Components by Cell Culture of Agastache rugosa O. Kuntze

  • Shin, Seung-Won;Kim, You-Sun;Kang, Chan-Ah
    • Natural Product Sciences
    • /
    • v.7 no.4
    • /
    • pp.120-123
    • /
    • 2001
  • To develop systems for economic production of useful essential oil compounds, callus was induced from the seedlings of Agastache rugosa and cultured on MS medium. The volatile oil fraction was extracted from the callus and investigated by mean of GC-MS. The composition of the oil was compared with that of the mother plant. As a result, sixty five compounds including ferruginol were identified in the essential oil fraction. The main component of the oil from the leaves of Agastache rugosa was methyl chavichol (53.6%). Methyl jasmonate and jasmonic acid were added to the culturing cell suspension, separately and the composition of induced oil were compared. The oils from cultured cells treated with jasmonates showed considerably different patterns. Especially, the peak of estragole was found in callus oil after treatment with methyl jasmonate as though the amount was limited to 0.58%. In general, the TIC pattern of GC-MS of the callus oil became more similar to the oil from the leaves after elicitation.

  • PDF

Change of Essential Oil Constituents during Flue-curing Process in Flue-cured Tobacco, NC82 & KF114 (황색종 NC82와 KFl14의 건조단계별 정유성분의 변화)

  • Hong, Yeol;Lim, Heung-Bin;Seok, Young-Sun;Shin, Ju-Sik;Kim, Jong-Yeol;Ra, Do-Young;Lee, Hak-Su
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.168-178
    • /
    • 2001
  • Essential oil in tobacco leaves influences the taste and aroma of cigarette smoke and is important to tobacco quality. This study was conducted to investigate the change in the level of essential oil components during flue-curing process of two flue-cured tobaccos, NC82 and KEl14. Flue-curing process was divided by six steps; harvest stage, the end of yellowing stage, the middle of color fixing stage, the end of color fixing stage, the middle of midrib drying stage, full-cured stage. NC82 in each stage contained 0.28%, 0.30%, 0.35%, 0.36%, 0.40% and 0.42% essential oil, respectively, and KF114 were 0.29%, 0.31%, 0.34%, 0.36%, 0.39% and 0.41%, respectively. Almost all hydrocarbons on the basis of relative peak area were gradually increased in two varieties with curing, neophytadiene content in them was highest at the full-cured stage. Most of alcohols and esters with curing showed a declining trend, but benzyl alcohol was increased in two tobaccos. Ketones were largely increased at the midrib drying stage during the curing process, especially, the most largely increasing constituent was $\beta$-damascenone among them. The content of 2-butylterahydrofuran, heterocyclic compounds, was largely increased at tile color fixing stage. There was no considerable difference between NC82 and KFl14 at the GC profile of essential oil and the pattern of each components during flue-curing process.

  • PDF

Chemical Components of Seed Oil of Sapium japonicum Pax. et Hoffm. (사람주나무 종실유의 화학적 조성)

  • Choi, Myung-Suk;Yang, Jae-Kyung;Gang, Byeng-Kuk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.3
    • /
    • pp.274-282
    • /
    • 2000
  • Physico-chemical characteristics and chemical composition of seed oil of Sapium japonicum were determined by various analysis methods. Physio-chemical characteristics of the extracted oil from fresh seed were specific gravity (0.928), refraction index (1.477), acid value (2.30), saponification number (190.0), and iodine value (126.0). Neutral lipid (93%) in seed oil was identified as major components, followed by glycolipid (4.9%) and phospholipid (1.3%). In GC analysis, nine fatty acids were presented in the seed oil. Among fatty acids, predominant fatty acids were oleic acid (45.8%) and linoleic acid (35.6%). The contents of fatty acids of seed oil somewhat varied with their storage period. Composition of fatty acids from lipid fractions which were isolated on silica open column was investigated. Major fatty acids in three lipid fractions were linoleic acid and linolenic acid. The fatty acid contents of fresh seed oil derived from each lipid fraction were generally high comapred to storage seed oil. From the above results, seed oil of Sapium Japonicum could be useful in cosmetics, detergents and a few pharmaceuticals.

  • PDF

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Characteristics of Flavor Reversion in Seasoning Oil using Sunflowerseed Meal (해바라기박을 이용한 향미유의 변향특성)

  • Koo, Bon-Soon;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.6
    • /
    • pp.808-812
    • /
    • 2007
  • Seasoning oils(SO) were manufactured by direct fire method(DFM) and autoclaving method(AM) using sunflower seed meal. The SO manufactured by DFM is stronger than that by AM for Lovibond color and flavor strength. The flavor strength of 2 kinds SOs were lower than sesame oil as a control group. But acid value of SOs were superior than sesame oil, 0.452, 0.463 and 1.987, respectively. The level of Lovibond color for 2 kinds of sample seasoning oil was similar. Composition and contents of total volatile flavor components were determined from their essential oils of sesame oil and 2 kinds sample seasoning oils. As a result, total volatile flavor contents of sesame oil was 1,300.6 ppm, and that of seasoning oil samples were 697.8 ppm, 648.2 ppm, respectively. Major volatile flavor components of seasoning oil were 2-butanone, hexanal, methyl pyrazine etc. In contrast, major volatile flavor component of sesame oil was pyrazines, but that was not a major component of 2 kinds of sample seasoning oils.

Changes of Properties and Gas Components according to Accelerated Aging Test of Vegetable Transformer Oil (식물성 절연유의 가속열화에 따른 주요 성분 및 물성 변화)

  • Lee, Donmin;Lee, Mieun;Park, Cheonkyu;Ha, Jonghan;Park, Hyunjoo;Jun, Taehyun;Lee, Bonghee
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.18-26
    • /
    • 2016
  • Mineral oil is the most widely used for electrical transformer, though some factors should be considered such as their environmentally harmfulness when it spill and low flash point. To cover these disadvantages, vegetable oil has developed because of its high biodegradability and thermal stability. However, it is necessary that many studies should conduct to reveal the detailed impacts of long-term operation as transformer oil. In this paper, we applied the accelerated aging test which simulate the real transformer circumstances using insulation paper, coil, steel at $150^{\circ}C$, which is higher than normal operation, for 2 weeks. To figure out the oxidation characteristics between mineral oil and vegetable oil test major properties and components such as total acid number, dielectric breakdown and dissolved gas components during that period. As a result of these tests, we found that vegetable oil has higher electric insulation ability than mineral oil though poor total acid number by hydrophile property. Vegetable oil also kept its thermal stability under the given circumstances.

Analysis of Pressure Fluctuations in Oil Hydraulic Pipe Network (유압 관로망에서의 압력 맥동 해석)

  • 이일영;정용길;양경욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 1997
  • An analyzing method for pressure fluctuations in oil hydraulic pipe network was developed in this study. The object pipe network has multi-branch configuration, and the pipelines of it are composed of steel tubes, flexible hoses. Also, accumulators, orifices and lumped oil volume components are attached on it. Transfer matrix method, in other words impedance method, was used for the analysis. The reliability and usefulness of the analyzing method were confirmed by investigation computed results and experimental results got in this study.

  • PDF

EFFECT OF ENGINE OIL ON EXHAUST EMISSIONS

  • Maxa, D.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.423-424
    • /
    • 2002
  • Amount of regulated emissions (CO, $NO_x$, HC), and emissions of some groups of organic substances (volatile hydrocarbons, polyaromatics, and aldehydes) were measured in the standard ECE 83 test on spark ignition engine of a passenger car. The influence of the engine oil composition (mineral or fully synthetic) was examined. For both engine oils, exhaust emissions were measured with fresh oil as well as used oil at the end of the oil drain interval. Unleaded petrol and CNG were used as fuels in all experiments performed. The main conclusion made from the tests is that polyaromatics is the only part of th ε exhaust emissions that was influenced with the nature of the engine oil. Effect on the other components of emissions (aldehydes and VOC) was negligible. Emissions of polyaromatics were almost twice higher for fresh mineral as for fresh fully synthetic oil. The amount of polyaromatics in the exhaust emissions increased slightly with mileage for fully synthetic and substantially more for mineral engine oil.

  • PDF