• Title/Summary/Keyword: oil and moisture

Search Result 396, Processing Time 0.026 seconds

Evaluation of Supplemental Vitamin Premix in a Test Diet Containing Fish Meal as Protein Source for Juvenile Korean Rockfish (Sebastes schlegeli) (단백질원으로 어분이 첨가된 조피볼락 실험사료의 비타민 혼합물 평가)

  • Lee Sang-Min;Kim Sun-Myoung
    • Journal of Aquaculture
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 1996
  • A feeding experiment was conducted using juvenile Korean rockfish (Sebastes schlegeli) to evaluate supplemental vitamin premix in a test diet containing fish meal as protein source for nutritional study. Four vitamin premixes were prepared by adjusting different quantity and combination of vitamins. Each vitamin premix contained (mg/kg diet) : premix-1 : ascorbic acid, 2666 ; a-tocopheryl acetate, 417 ; thiamin, 60 ; riboflavin, 200 ; pyridoxine, 40 ; niacin, 800 ; Ca-D-pantothenate, 280 ; myo-inositol, 4000 ; D-biotin, 6 ; folic acid, 15 ; p-amino-benjoic acid, 400 ; mennadione, 40 ; A, 16 ; $D_3$, 0.1 ; choline chloride, 8000 ; cyanocobalamin, 0.09 ; premix-2 : ascorbic acid, 270 ; a-tocopheryl acetate, 189 ; thiamin, 13.5 ; riboflavin,, 27 ; pyridoxine, 13.5 ; niacin, 135 ; Ca-D-pantothenate, 135 ; myo-inositol, 135 ; D-biotin, 1. 4 : folic acid, 4.9 ; mennadione, 5.4 : A, 5.4 ; $D_3$, 2.2 ; choline chloride, 3000 ; cyanocobalamin, 0.05 ; premix-3 : ascorbic acid, 570 ; a-tocopheryl acetate, 107 ; thiamin, 20 ; riboflavin, 14.3 ; pyridoxine, 14.3 ; niacin, 71,3 ; Ca-D-pantothenate, 57 ; myo-inositol, 456 ; D-biotin, 0.7 ; folic acid, 2.9 ; p-aminobenjoic acid, 285 ; mennadione, 5.7 ; A, 5.7 ; $D_3$, 1.1 ; choline chloride, 1500 ; cyanocobalamin, 0.03 ; premix-4 : ascorbic acid, 190 : a-tocopheryl acetate, 36 ; thiamin, 6.7 ; riboflavin, 4.8 ; pyridoxine, 4.8 ; niacin, 23.8 ; Ca-D-pantothenate, 19 ; myo-inositol, 152 ; D-biotin,0.2 ; folic acid, 1 ; p-aminobenjoic acid, 95 ; mennadione, 1.9 ; A, 1.9 ; $D_3$, 0.4 ; choline chloride, 500 ; cyanocobalamin, 0.01. Triplicate groups of the 50 fish averaging 4.25 g were fed one of four isoproteic ($47\%$) and isolipidic ($9\%$) experimental diets to satiation twice a day for 10 weeks. Weight gain, feed efficiency and protein retention in fish fed the diet with vitamin premix-1 were significantly higher than those in fish fed the other diets (P<0.05). Moisture, protein and lipid contents of muscle and whole body were not affected by different dietary vitamin premix (P>0,05). These results indicate that premix-1 can be used to adequate supplemental vitamin premix in test diet containing fish meal as protein source for juvenile Korean rockfish.

  • PDF

Effects of Conjugated Linoleic Acid-Triglyceride Additives on Quality Characteristics of Pressed Ham (Conjugated Linoleic Acid-Triglyceride 첨가가 프레스햄의 품질특성에 미치는 영향)

  • Lee, Jeong-Ill;Ha, Young-Joo;Lee, Jae-Ryung;Joo, Young-Kuk;Kwack, Suk-Joon;Do, Chang-Hee
    • Food Science of Animal Resources
    • /
    • v.27 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Conjugated linoleic acid (CLA) was chemically synthesized using the alkaline isomerization method of com oil. CLA-TG was synthesized by reaction with sodium methoxide. Five different treatments were devised based on differences in the amount of CLA-TG added into the pressed han. for controls, 10% of pork back fat among the total component was only added without any CLA-TG. For the first treatment, 5% of CLA-TG among the lard component added into the press ham was replaced. For the 2nd, 3rd and 4th treatments, 10%, 15% and 20% of CLA-TG was respectively replaced. Pressed ham manufactured using CLA-TG was vacuum packaged and then stored for 1, 7, 14, 21 and 28 days at $4^{\circ}C$. Samples were analyzed for chemical composition, physico-chemical properties (pH, color), and texture characteristics. Typical chemical composition characteristics (moisture, crude protein, crude fat) were not significantly different between controls and CLA-TG treatment groups. Crude fat content of CLA-TG treatment groups was significantly lower than that of controls (p<0.05). pH values of controls was higher than that of CLA-TG treatment groups. The pH of control and CLA-TG treatment groups increased significantly as the storage period increased (p<0.05). Meat color (CIE $L^*,\;b^*$) of CLA-TG treatment groups was higher than that of controls. $a^*$ values were decreased by replacement of CLA-TG, but appeared to be unaffected by storage length. There was no significant difference in texture between controls and CLA-TG treatment groups. Based on these findings, we conclude that the physico-chemical properties and texture characteristics of manufactured pressed ham were not affected by CLA-TG addition. Also, our results indicate that high-quality pressed ham can be manufactured with CLA accumulation.

Formation of Liquid Crystalline with Hydrogenated Lecithin and Its Effectiveness (수소첨가레시친을 이용한 액정 젤의 형성과 보습효과)

  • Kim, In-Young;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2004
  • This study described about method that forms liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in O/W emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following, to form liquid crystal, an emulsifier used 4.0wt% of cetostearyl alcohol (CA) by 4.0wt% of HL as a booster. Moisturizers contained 2wt% of glycerin and 3.0wt% of 1,3-butylene glycol (1,3-BG). Suitable emollients used 3.0wt% of cyclomethicone, 3.0wt% of isononyl isononanoate (ININ), 3.0wt% of cerpric/carprylic triglycerides (CCTG), 3.0wt% of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions (pH=4.0-11.0). Considering safety of skin, pH was the most suitable 6.0${\pm}$1.0 ranges. The stable hardness of LCG formation appeared best in 32 dyne/$\textrm{cm}^2$. Particle of LCG is forming size of 1-20$\mu\textrm{m}$ range, and confirmed that the most excellent LCG is formed in 1-6$\mu\textrm{m}$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi -layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased 36.6%. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

A Study on the Moisturizing Effect and Preparation of Liquid Crystal Structures Using Sucrose Distearate Emulsifier (슈크로오스디스테아레이트를 사용한 액정구조의 생성과 보습효과에 관한 연구)

  • Kwak, Myeong-Heon;Kim, In-Young;Lee, Hwan-Myung;Park, Joo-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This study is to make the liquid crystalline structure using sucrose distearate (Sucro-DS) emulsifier to create the hydrophilic type oil-in-water (O/W) emulsion, the droplets of the emulsion having a structure of a multi-lamellar structure. We have studied the physicochemical properties of Sucro-DS using those techniques. And it has been studied in the emulsion performance. In order to form the liquid crystalline structure applying 3 wt% of Sucro-DS, 5 wt% of glycerin, 5 wt% of squalane, 5 wt% of capric/caprylic triglyceride, 3wt% of cetostearyl alcohol, 1wt% of glyceryl mono-stearate, 78 wt% of pure water in mixture having the lamellar structure of stable multi-layer system was found to formed. By applying them, they were described how to create an unstable active material encapsulated cream. Further, the moisturizing cream was studied using this technique. It reported the results to the skin improvement effect by the human clinical trials. The pH range to produce a stable liquid crystal phase using a Sucro-DS was maintained in 5.2~7.5. In order to increase the stability of the liquid crystal, it was when behenyl alcohol containing 3 wt%, the hardness at this time was 13 kg/mm,min. Viscosity of the same amount was 25,000mPas/min. After a test for the effects of the emulsions, the concentration of 6 wt% Sucro-DS is that was appropriate, the particle size of the liquid crystal was 4~6mm. It was observed through a microscope analysis, reliability of the liquid crystal changes for 3 months was found to get stable at each $4^{\circ}C$, $25^{\circ}C$ and $45^{\circ}C$. In clinical trial test, before applying a moisturizing effect it was $13.4{\pm}7%$. Moisturizing cream liquid crystal was not formed in $14.5{\pm}5%$. Therefore, applying than ever before could see the moisture about 8.2% was improved. On the other hand, it was the moisturizing effect of the liquid cream is $19.2{\pm}7%$. The results showed that 43.3% improvement than that previously used. Applications fields, Sucro-DS emulsifier used liquid cream, lotion, eye cream and a variety of formulations can be developed, as well as the cosmetics industry is expected to be wide fields in the application of the external preparation for skin emulsion technology in the pharmaceutical industry and pharmaceutical industry.

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF