• Title/Summary/Keyword: ohmic layer

Search Result 168, Processing Time 0.033 seconds

Interface Characteristics and Electrical Properties of SiO2 and V2O5 Thin Films Deposited by the Sputtering (스퍼터링 방법으로 증착한 SiO2와 V2O5박막의 전류특성과 계면분석)

  • Li, Xiangjiang;Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.66-69
    • /
    • 2018
  • This study was researched the electrical properties of semiconductor devices such as ITO, $SiO_2$, $V_2O_5$ thin films. The films of ITO, $SiO_2$, $V_2O_5$ were deposited by the rf magnetron sputtering system with mixed gases of oxygen and argon to generate the plasma. All samples were cleaned before deposition and prepared the metal electrodes to research the current-voltage properties. The electrical characteristics of semiconductors depends on the interface's properties at the junction. There are two kinds of junctions such as ohmic and schottky contacts in the semiconductors. In this study, the ITO thin film was shown the ohmic contact properties as the linear current-voltage curves, and the electrical characteristics of $SiO_2$ and $V_2O_5$ films were shown the non-linear current-voltage curves as the schottky contacts. It was confirmed that the electronic system with schottky contacts enhanced the electronic flow owing to the increment of efficiency and increased the conductivity. The schottky contact was only defined special characteristics at the semiconductor and the interface depletion layer at the junction made the schottky contact which has the effect of leakage current cutoff. Consequently the semiconductor device with shottky contact increased the electronic current flow, in spite of depletion of carriers.

Thin Film Amorphous/Bulk Crystalline Silicon Tandem Solar Cells with Doped nc-Si:H Tunneling Junction Layers

  • Lee, Seon-Hwa;Lee, Jun-Sin;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.257.2-257.2
    • /
    • 2015
  • In this paper, we report on the 10.33% efficient thin film/bulk tandem solar cells with the top cell made of amorphous silicon thin film and p-type bulk crystalline silicon bottom cell. The tunneling junction layers were used the doped nanocrystalline Si layers. It has to allow an ohmic and low resistive connection. For player and n-layer, crystalline volume fraction is ~86%, ~88% and dark conductivity is $3.28{\times}10-2S/cm$, $3.03{\times}10-1S/cm$, respectively. Optimization of the tunneling junction results in fill factor of 66.16 % and open circuit voltage of 1.39 V. The open circuit voltage was closed to the sum of those of the sub-cells. This tandem structure could enable the effective development of a new concept of high-efficiency and low cost cells.

  • PDF

Fabrication of Vertical Organic Junction Transistor by Direct Printing Method

  • Shin, Gunchul;Kim, Gyu-Tae;Ha, Jeong Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.731-736
    • /
    • 2014
  • An organic junction transistor with a vertical structure based on an active layer of poly(3-hexylthiophene) was fabricated by facile micro-contact printing combined with the Langmuir-Schaefer technique, without conventional e-beam or photo-lithography. Direct printing and subsequent annealing of Au-nanoparticles provided control over the thickness of the Au electrode and hence control of the electrical contact between the Au electrode and the active layer, ohmic or Schottky. The junction showed similar current-voltage characteristics to an NPN-type transistor. Current through the emitter was simply controllable by the base voltage and a high transconductance of ~0.2 mS was obtained. This novel fabrication method can be applied to amplifying or fast switching organic devices.

INVESTIGATIONS OF CONDUCTION MECHANISM OF ORGANIC MOLECULES USED AS BUFFER HOLE INJECTING LAYER IN OLEDS

  • Shekar, B. Chandar;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.966-969
    • /
    • 2003
  • Thin film capacitors with Al-Polymer-Al sandwich structure were fabricated. The bottom and top aluminium (Al) electrodes were deposited by vacuum evaporation and copper phthalocyanine (CuPc), polyaniline-emeraldine base (Pani-EB) and cobalt phthalocyanine/polyaniline - emeraldine base (CoPc /Pani-EB) blend films (which can be used as buffer hole injection layer in OLEDs) were deposited by spin coating technique. X-ray diffractograms indicated amorphous nature of the polymer films whose thicknesses were measured by capacitance and Rutherford Backscattering Spectrometry (RBS) methods. AC conduction studies revealed that the conduction mechanism responsible in these films is variable range hopping of polarons. From D.C conduction studies, it is observed that, the nature of conduction is ohmic in the lower fields and at higher fields the dominating D.C conduction is of Poole-Frenkel type.

  • PDF

Switching Characteristics of Amorphous GeSe TFT for Switching Device Application

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jo, Won-Ju;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.403-404
    • /
    • 2012
  • We fabricated TFT devices with the GeSe channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is high. Based on the experiments, we draw the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Electrical Switching Characteristics of Thin Film Transistor with Amorphous Chalcogenide Channel

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.280-281
    • /
    • 2011
  • We fabricated the devices of TFT type with the amorphous chalcogenide channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is about 4 order. Based on the experiments, we contained the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

다공질 실리콘을 이용한 전계 방출 소자

  • 주병권
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.92-97
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900 ^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^2$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Electrical Conduction Mechanism in ITO/Alq3/Al Organic Light-emitting Diodes

  • Chung, Dong-Hoe;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.24-28
    • /
    • 2004
  • We have used ITO/Alq$_3$/Al structure to study electrical conduction mechanism in organic light-emitting diodes. Current-voltage-luminance characteristics were measured at room temperature by varying the thickness of Alq$_3$ layer from 60 to 400mm. We were able to confirm that there are three different mechanisms depending on the applied voltage region; ohmic, space-charge-limited current, and trap-charge-limit-current mechanism. And the maximum luminous efficiency was obtained when the thickness of Alq$_3$ layer is 200nm.

Effect of carrier collector on the Efficiency of DSSCs

  • Ramasamy, Easwaramoorthi;Lee, Won-Jae;Lee, Dong-Yun;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.633-634
    • /
    • 2005
  • Transparent conducting glasses exhibit high ohmic losses that are apparent in the case of large size Dye Sensitized Solar Cells (DSSCs). In this study, we investigated the impact of current collectors over the efficiency of DSSCs. The Silver current collectors were prepared on both counter electrode and working electrode surface by screen printing method. For long term stability in electrolyte environment and also to avoid the charge recombination, current collectors are protected by sodium silicate overcoat layer. These current collectors were characterized for their microstructure parameters. Also current collector's stability in electrolyte environment has been investigated.

  • PDF

A Study on the Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Atomic Layer-Deposited Thin-Film Electrolyte (수소연료를 이용하는 원자층증착 박막전해질 세라믹연료전지의 초기성능 저하에 관한 연구)

  • JI, SANGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~17% for 40 minutes, which rapidly decreased in the early stage of the performance evaluation but gradually decreased. The open circuit voltage ratio decreased with respect time; however, its time behavior was remarkably different with the reduction behavior of the peak power density ratio. The activation resistance ratio increased as ~15% for 40 minutes, which was almost similar with the time behavior of the peak power density ratio.