Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.731

Fabrication of Vertical Organic Junction Transistor by Direct Printing Method  

Shin, Gunchul (Department of Chemical and Biological Engineering, Korea University)
Kim, Gyu-Tae (School of Electrical Engineering, Korea University)
Ha, Jeong Sook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Abstract
An organic junction transistor with a vertical structure based on an active layer of poly(3-hexylthiophene) was fabricated by facile micro-contact printing combined with the Langmuir-Schaefer technique, without conventional e-beam or photo-lithography. Direct printing and subsequent annealing of Au-nanoparticles provided control over the thickness of the Au electrode and hence control of the electrical contact between the Au electrode and the active layer, ohmic or Schottky. The junction showed similar current-voltage characteristics to an NPN-type transistor. Current through the emitter was simply controllable by the base voltage and a high transconductance of ~0.2 mS was obtained. This novel fabrication method can be applied to amplifying or fast switching organic devices.
Keywords
Organic junction transistor; Poly(3-hexylthiophene); Micro-contact printing; Au-nanoparticle; Langmuir-Schaefer technique;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Paloheimo, J.; Kuivaleinen, P.; Stubb, H.; Vuorimaa, E.; Yli-Lahti, P. Appl. Phys. Lett. 1990, 56, 1157-1159.   DOI
2 Nelson, S. F.; Lin, Y.-Y.; Gundlach, D. J.; Jackson, T. N. Appl. Phys. Lett. 1998, 72, 1854-1856.   DOI   ScienceOn
3 Bao, Z. N.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett. 1996, 69, 4108-4110.   DOI   ScienceOn
4 Yiliang, W.; Yuning, L.; Beng, S. O.; Ping, L.; Sandra, G.; Brian, C. Adv. Mater. 2005, 17, 184-187.   DOI   ScienceOn
5 Rhoderick, E. H. Metal-semiconductor Contacts; Clarendon Press: Oxford, 1978; p 28.
6 Ruffino, F.; Grimaldi, M. G.; Giannazo, F.; Roccaforte, F.; Raineri, V. Appl. Phys. Lett. 2006, 89, 24113-24115.
7 Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550-575.   DOI   ScienceOn
8 Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741-1744.   DOI   ScienceOn
9 Myung, S.; Lee, M.; Kim, G. T.; Ha, J. S.; Hong, S. Adv. Mater. 2005, 17, 2361-2364.   DOI   ScienceOn
10 Sachs, E.; Cima, M.; Bredt, J.; Curodeau, A.; Fan, T.; Brancazio, D. Manuf. Rev. 1992, 5, 117-126.
11 Wang, B.; Feng, J.; Gao, C. Macromol. Biosci. 2005, 5, 767-774.   DOI
12 Zin, M. T.; Ma, H.; Sarikaya, M.; Jen, A. K.-Y. Small 2005, 1, 698-702.   DOI
13 Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378-3379.   DOI   ScienceOn
14 Loo, Y. L.; Willett, R. L.; Baldwin, K. W.; Rogers, J. A. J. Am. Chem. Soc. 2002, 124, 7654-7655.   DOI   ScienceOn
15 Santhanam, V.; Liu, J.; Agarwal, R.; Andres, R. P. Langmuir 2004, 19, 7881-7887.
16 Watanabe, Y.; Iechi, H.; Kudo, K. Appl. Phys. Lett. 2006, 89, 233509-233511.   DOI
17 Bozler, C. O. Surf. Sci. 1986, 74, 487-500.
18 Yang, Y.; Heeger, A. J. Nature 1994, 372, 344-346.   DOI   ScienceOn
19 Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy, Methods and Applications; Cambridge University Press: Cambridge, 1994; p 100.
20 Sheng, P.; Abeles, B.; Arie, Y. Phys. Rev. Lett. 1973, 31, 44-47.   DOI
21 Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801-802.