• Title/Summary/Keyword: offshore pipelines

Search Result 74, Processing Time 0.027 seconds

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Developments of Free Span Analysis of Offshore Pipelines by New DnV Code (최신 DnV 규정에 의한 해저 파이프라인의 자유 경간 해석)

  • Kim, Bum-Suk;Lee, Jong-Hyun;Park, Han-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.68-72
    • /
    • 2001
  • Two different methods of free span analysis of offshore pipelines by DnV codes were introduced and compared in order to calculate the allowable free span lengths of the offshore pipelines. The allowable span lengths of the offshore pipelines for installation, hydrotest and operation conditions by static and dynamic span analysis were determined. Static analysis was performed by ASME codes and dynamic span analysis was performed by both 1981 DnV code. Comparison of two codes were carried out. A new design procedure to calculate the allowable span lengths was developed with new DnV code.

  • PDF

Expansion Spool Design of an Offshore Pipeline by the Slope Deflection Method

  • Choi, Han-Suk;Do, Chang-Ho;Na, Young-Jang
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Offshore, sub-sea pipelines that transport oil and gas experience thermal expansion induced by the temperature of the transported medium during operation. The expansion of the pipeline can induce overload and cause damage to offshore platforms or sub-sea structures that are connected to the pipelines. To mitigate and prevent these incidents, expansion spools are installed between offshore, sub-sea pipelines and risers on the platform. This paper presents the results of the study and development of a simplified design method for expansion spools, using the slope deflection method for the purpose of preliminary design or front-end engineering and design (FEED).

Eddy Current Sensor Development for Offshore Pipeline NDT Inspection (해양파이프라인 비파괴검사를 위한 와전류 센서 개발)

  • Lee, Seul-Gi;Song, Sung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

Free Spanning of Offshore Pipelines by DNV

  • CHOI HAN SUK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.47-52
    • /
    • 2005
  • This paper introduces a procedure for free span and fatigue analysis of offshore pipelines per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were established to calculate the allowable span lengths in the new design codes. The screening criteria allows a certain amount of vortex-induced vibration due to wave and current loading. However, the induced pipe stresses are very small and usually below the limit stresess of typical S-N curves. In contrast, the conventional criteria did not allow any vortex-induced vibration in the free span of pipelines. Thus, the screening criteria yields reduced allowable span lengths. A simplified procedure was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions. Comparisons with conventional criteria are included.

Establishment of Construction Procedure on the Off Shore Piping Work of a LNG Unloading Project (LNG 하역 플랜트의 Off Shore 배관시공절차 확립에 관한 연구)

  • Kim, Yong-Tan;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.4
    • /
    • pp.80-85
    • /
    • 2009
  • LNG stevedoring plant offshore pipelines requires human power and the longest construction period in constructing LNG storing terminal and influences on the success of the project absolutely. In this paper, the constructing procedures of LNG stevedoring plant offshore pipeline was established. Establishment of constructing procedures of LNG stevedoring plant offshore pipeline includes procurement of main equipments, iron frame and pipelines. To predict any expectable problems, that may occur by the stage of construction the application to the field works with a base of theoretical and practical contents for the constructing procedures of LNG stevedoring plant offshore pipelines can be established.

  • PDF

Improvement on the Free Spanning Analysis of Offshore Pipelines

  • Jung, Jong-Heon;Park, Han-Suk
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • Improvement was made on the free span analysis of the offshore pipelines. The effect of axial force (both tension and compressive force) can be explicitly applied to the current design code. The closed form solutions of beam-column equation were derived for the typical boundary conditions. The solutions can be used to find the natural frequencies of the span using the energy balance concept. The results can be applied to the current design code and will result more realistic calculation of free span lengths of offshore pipelines.

  • PDF

Buckling response of offshore pipelines under combined tension and bending

  • Gong, Shun-Feng;Ni, Xing-Yue;Yuan, Lin;Jin, Wei-Liang
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.805-822
    • /
    • 2012
  • Offshore pipelines have to withstand combined actions of tension and bending during deepwater installation, which can possibly lead to elliptical buckle and even catastrophic failure of whole pipeline. A 2D theoretical model initially proposed by Kyriakides and his co-workers which carried out buckling response analysis of elastic-plastic tubes under various load combinations, is further applied to investigate buckling behavior of offshore pipelines under combined tension and bending. In association with practical pipe-laying circumstances, two different types of loadings, i.e., bent over a rigid surface in the presence of tension, and bent freely in the presence of tension, are taken into account in present study. In order to verify the accuracy of the theoretical model, numerical simulations are implemented using a 3D finite element model within the framework of ABAQUS. Excellent agreement between the results validates the effectiveness of this theoretical method. Then, this theoretical model is used to study the effects of some important factors such as load type, loading path, geometric parameters and material properties etc. on buckling behavior of the pipes. Based upon parametric studies, a few significant conclusions are drawn, which offer a theoretical reference for design and installation monitoring of deepwater pipelines.

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.