• Title/Summary/Keyword: off-line navigation

Search Result 30, Processing Time 0.024 seconds

Off-Line Navigation System for PIG(Pipeline Investigation Gauge) (PIG 시스템에 적용된 오프라인 항법시스템)

  • Yu, Jae-Jong;Han, Hyung-Seok;Park, Chan-Gook;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.224-227
    • /
    • 2002
  • In this paper, PIG(Pipeline Investigation Gauge) system is introduced and off-line navigation method for the system is studied. Off-line navigation is obtained by using a smoothing filter and the position of the point with some problems in gas pipeline can be detected with a good accuracy in real pipeline investigation experiment.

  • PDF

Design of Nonlinear Fixed-interval Smoother for Off-line Navigation (오프라인 항법을 위한 비선형 고정구간 스무더 설계)

  • 유재종;이장규;박찬국;한형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.984-990
    • /
    • 2002
  • We propose a new type of nonlinear fixed interval smoother to which an existing nonlinear smoother is modified. The nonlinear smoother is derived from two-filter formulas. For the backward filter. the propagation and the update equation of error states are derived. In particular, the modified update equation of the backward filter uses the estimated error terms from the forward filter. Data fusion algorithm, which combines the forward filter result and the backward filter result, is altered into the compatible form with the new type of the backward filter. The proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing algorithm to off-line navigation system and show the proposed algorithm estimates position, and altitude fairly well through the computer simulation.

Automatic Berthing Control of Ship Using Adaptive Neural Networks

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, an adaptive neural network controller and its application to automatic berthing control of ship is presented. The neural network controller is trained online using adaptive interaction technique without any teaching data and off-line training phase. Firstly, the neural networks used to control rudder and propeller during automatic berthing process are presented. Secondly, computer simulations of automatic ship berthing are carried out in Pusan bay to verify the proposed controller under the influence of wind disturbance and measurement noise. The results of simulation show good performance of the developed berthing control system.

THE MCP-MAUS INTERFACE FOR UPDATING PARTIAL MAP

  • Jang, In-Sung;Kim, Ju-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.126-129
    • /
    • 2007
  • Telematics, one of the so-called New Growth Engine of IT839, is a leading IT service where wireless internet service represented by information and mobility is extended to the area of transportations to provide Telematics service. The killer-application of Telematics is navigation system. Recently, due to the mass storage conversion, the performance of the terminal and mobile communications technology development, navigation system is also changed. It more and more develops into 3D in a preexistence 2D map. In the future, it is expected to include the remote sensing map. There is also the characteristic of all the information expressed in frequently a change partially happening. That is, POI(Point Of Interest) which is freshly registered or is deleted is many. In a preexistence, MCP(Map Contents Providers) offer the new version map by off-line monthly or quarterly. And a user wastes time and is inconvenient because of updating the total map by the off-line. Thus, in this paper, in order to resolve this, we describe MCP-MAUS(Maus Air Update Server) interface for updating only the partial map that was changed.

  • PDF

THE SYSTEM FOR UPDATING PARTIAL MAP

  • Jang, In-Sung;Lee, Moon-Soo;Kim, Ju-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.270-273
    • /
    • 2008
  • Telematics is a leading IT service where wireless internet service represented by information and mobility is extended to the area of transportations to provide Telematics service. One of the killer-application about Telematics is navigation system. Recently, due to the mass storage conversion, the performance of the terminal and mobile communications technology development, navigation system is also changed. It more and more develops into 3D in a pre-existence 2D map. In the future, it is expected to include the remote sensing map or video map. There is also the characteristic of all the information expressed in frequently a change partially happening. That is, POI(Point Of Interest) which is freshly registered or is deleted is many. In a pre-existence, Map Contents Providers offer the new version map by off-line monthly or quarterly. And a user wastes time and is inconvenient because of updating the total map by the off-line. Thus, in this paper, in order to resolve this, we describe MAUS(Map Air Update Server) for updating only the partial map that was changed

  • PDF

A Study on the Product Categorization Model for Efficient Search in On-line Chartering

  • Choi, Hyung-Rim;Park, Nam-kyu;Park, Young-Jae;Park, Yong-Sung;Kang, Si-Hyeob
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.307-313
    • /
    • 2003
  • Off-line ship chartering is done nearly through the brokers. Because of the international scale of chartering market, brokers spend too much times and costs on searching the most appropriate product which the consumers want. In this research, we propose the on-line Charter Product Categorization Model to search the products efficiently in the Cyber Chartering System. This Model will make concerned parties of the ship chartering to get unified product information efficiently, and the select the most appropriate product. In this research, we classified the ship chartering products into categories of cargo, ship type, and sea routes, and defined mutual relation of each products, and we verified that this classification is necessary to search the products through the product searching experiment.

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Design of a pen-shaped input device using the low-cost inertial measurement units (저가격 관성 센서를 이용한 펜 형 입력 장치의 개발)

  • Chang, Wook;Kang, Kyoung-Ho;Choi, Eun-Seok;Bang, Won-Chul;Potanin, Alexy;Kim, Dong-Yoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • In this paper, we present a pen-shaped input device equipped with accelerometers and gyroscopes that measure inertial movements when a user writes on 2 or 3 dimensional space with the pen. The measurements from gyroscope are integrated once to find the attitude of the system and are used to compensate gravitational effect in the accelerations. Further, the compensated accelerations are integrated twice to yield the position of the system, whose basic concept stems from the field of inertial navigation. However, the accuracy of the position measurement significantly deteriorates with time due to the integrations involved in recovering the handwriting trajectory This problem is common in the inertial navigation system and is usually solved by the periodic or aperiodic calibration of the system with external reference sources or other information in the filed of inertial navigation. In the presented paper, the calibration of the position or velocity is performed on-line and off-line. In the on-line calibration stage, the complementary filter technique is used, where a Kalman filter plays an important role. In the off-line calibration stage, the constant component of the resultant navigational error of the system is removed using the velocity information and motion detection algorithm. The effectiveness and feasibility of the presented system is shown through the experimental results.