• 제목/요약/키워드: off-gas characteristics

검색결과 248건 처리시간 0.029초

방사성폐기물 유리화설비의 배기가스 처리계통 운영 사례 연구 (A Case Study on Operation of Off-Gas Treatment System of Radioactive Waste Vitrification Facility)

  • 이혜현;박규원
    • 대한환경공학회지
    • /
    • 제38권5호
    • /
    • pp.249-254
    • /
    • 2016
  • 본 연구에서는 상용 유리화설비 설계를 위한 기초자료에 도움이 되고자 용융공정에서 발생되는 배기가스의 특성과 배기가스 처리계통 운영사례를 조사하였다. 유리화설비 운영의 목적은 용융공정으로 투입된 방사성폐기물 내에 함유되어 있는 유해물질과 용융공정 내에서 발생된 다양한 화학종을 함유하고 있는 유해 배기가스를 처리하는 것이다. 유리화설비를 건설, 운영하기 위해서는 안전성 분석을 통한 인허가가 필수적이며, 부산물로 발생하는 방사성핵종이나 유해물질을 법적 환경배출규제치 이하로 처리하는 것이 매우 중요하다. 이를 위해서는 배기가스의 특성을 정확히 파악하여 그 특성에 따라 적절한 배기가스 처리공정을 설계해야 한다. 따라서 적절한 배기가스 처리계통을 설계하는 데는 폐기물 발생 특성, 용융로 특성, 배기가스 규제지침, 배기가스 발생 특성, 배기가스 처리장치에 대한 성능 평가 등의 광범위한 요소를 고려해야 한다.

Evaluation of 0ff-gas Characteristics in Vitrification Process of ion-Exchange Resin

  • Park, S. C.;Kim, H. S.;K. H. Yang;C. H. Yun;T. W. Hwang;S. W. Shin
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.83-92
    • /
    • 2001
  • The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9Nm$^3$/h at the burning rate of 40kg/h. And the composition of off-gas was avaluated as $CO_2$(41.4%), steam(40.0%), $O_2$(13.3%), NO(3.6%), and SO$_2$(1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3Nm$^3$/h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin.

  • PDF

개질기용 예혼합 버너의 화염형태 및 안정성 특성 (Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers)

  • 이필형;박봉일;조순혜;황상순
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

개질기용 예혼합 연소장치의 연소특성 연구 (Combustion Characteristics of Premixed Burner for Fuel Reformer)

  • 이필형;이재영;한상석;박창수;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

FT반응 Off-gas를 이용한 고압축비 전기점화 엔진의 연소 및 배기가스 특성에 관한 연구 (Combustion and Emission Characteristics in a High Compression Ratio Spark Ignition Engine using Off-gas from FT reaction)

  • 정탄;이준순;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.114-121
    • /
    • 2018
  • FT process is a technology of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. During the FT process unreacted gas, known as Off-gas which has low-calorie, is discharged. In this study, we developed an engine that utilize simulated Off-gas, and studied the characteristics of the engine. The off-gas composition is assumed to be $H_2$ 70%, CO 15%, $CO_2$ 15% respectively. Under stoichiometric air-fuel ratio, the experiment was conducted at WOT and IMEP 0.3 Mpa changing compression ratio. Ignition timing was applied with MBT timing. Maximum indicated thermal efficiency 37% was achieved at compression ratio 15 under WOT. CO, $CO_2$ and $NO_x$ were influenced by changing compression ratio, and CO emission was satisfied with the US Tier 4 standard for nonroad engine over the entire experimental conditions.

마이크로 가스터빈의 탈설계 운전 성능특성 (Performance Characteristics for Off-design Operation of Micro Gas Turbines)

  • 김동섭;황성훈
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.

쇼케이스에서 고온가스 바이패스 및 단속운전 제상사이클의 성능특성에 관한 실험적 연구 (Experimental Study on the Performance Characteristics of Hot-gas Bypass and On-off Defrosting Cycle in a Showcase Refrigeration System)

  • 김용찬;조홍현;노현일;김영득;박윤철
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.493-502
    • /
    • 2002
  • During the defrosting process, the temperature in the cabinet of a showcase becomes high as compared to the setting point, which is not desirable for stored foods or materials. It is necessary to develop a more efficient defrosting method to prevent large temperature fluctuation. In this study, the performance of a showcase refrigeration system with three evaporators is investigated by employing a hot-gas bypass defrosting technology in the system under frosting and defrosting conditions. The operating characteristics are compared with those for the on-off defrosting method that has been widely used in current products. As a result, the hot-gas bypass defrosting method shows higher refrigerating capacity and less temperature fluctuation than the on-off method under frosting/defrosting conditions, while the power input is relatively high for the hot-gas bypass method.

마이크로 가스터빈의 탈설계 운전 성능특성 (Performance Characteristics for Off-design Operation of Micro Gas Turbines)

  • 황성훈;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.80-87
    • /
    • 2003
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions for a considerable amount of the time. This study aims at analyzing off-design performance characteristics of micro gas turbines and addressing the importance of the recuperator in the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration (fuel only control, variable speed operation, variable inlet guide vane control), and current vs advanced engines. Major finding is that maintaining turbine at high level is crucial in efficient operation of micro gas turbines.

  • PDF

산업용 냉각기의 온오프 제어와 토출가스 바이패스 제어 특성 비교 (Characteristics of On-off Control and Hot-Gas Bypass Control in an Industrial Cooler)

  • 백승문;문춘근;김은필;정석권;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.429-435
    • /
    • 2011
  • 본 연구는 현재 시판되어 산업현장에서 사용 중인 산업용냉각기의 대표적인 타입인 온오프 제어기가 채용된 냉각기와 토출가스 바이패스 제어기가 채용된 냉각기의 온도 제어 시스템의 운전특성 및 제어 특성을 비교분석하였다. 온오프 제어 냉각기보다 토출가스 바이패스 제어 냉각기는 최소 8%, 최대 20% COP가 높게 나타났다. 이러한 결과들은 산업 현장에서 좀 더 상황에 맞는 제품의선정을 할 수 있는 기초 자료로서 활용될 수 있으리라 생각된다.

개질기용 Anode Off Gas의 연소특성에 관한 연구 (Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer)

  • 이필형;황상순
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.