• Title/Summary/Keyword: oedometer

Search Result 112, Processing Time 0.028 seconds

Comparison of Coefficient of Consolidation and Prediction of Excess Pore Water Pressure of Agricultural Reservoir under Embankment on Soft Ground (연약지반상에 축조된 농업용저수지의 과잉공극수압 예측과 압밀계수의 비교)

  • Lee, Dal-Won;Kim, Eun-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study was carried out to comparison of coefficient of consolidation and the prediction of excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The predicted excess pore water pressure according to ponding was very applicable to practice because it was close to the observed data. Also, for the comparison of coefficient of consolidation, the oedometer, constant rate of strain (CRS), and Rowe cell tests were performed. The coefficient of consolidation at the Rowe cell and CRS tests showed a greate increase than in the oedometer test. The ratio of the vertical and horizontal coefficient of consolidation showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to predicting the required consolidation period in agricultural reservoir.

Development and Installation of Large-scale Geotechnical Testing Facilities (대형 지반시험장비의 개발 및 구축)

  • Seo, Min-Woo;Ha, Ik-Soo;Kim, Yong-Seong;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1233-1240
    • /
    • 2005
  • As the geotechnical technologies have grown, the size of civil structures has become bigger than before, thereby requiring large-scale geotechnical testing equipments which can evaluate the mechanical behavior of large size testing materials such as gravel, crushed rock and so on. These kind of large testing equipments are usually used to evaluate the mechanical characteristics of large size material which are applied in the large infra structures like dam, seashore structure, coastal landfill, soil-structure interaction and seismic response of large-scale structure. In this research, state-of-the-art information in the field of geotechnical engineering was collected and summarized for such large-scale experimental equipments as large-scale geo-centrifuge, large-scale triaxial testing machine, large-scale direct shear testing apparatus and large-scale oedometer.

  • PDF

An experimental study on depositional environments and consolidation properties of Shihwa deposits (시화지역 퇴적층의 퇴적환경과 압밀 특성에 관한 연구)

  • Won, Jeong-Yun;Chang, Pyoung-Wuck;Kim, Dong-Beom;Son, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.203-210
    • /
    • 2004
  • Consolidation properties were analysed by means of depositional environments. Depositional environments including geochemical properties, porewater chemistry, sediment structures, particle size distributions and carbon age dating were analysed using undisturbed samples retrieved successively from a boring hole in the study area. Laboratory oedometer tests and anisotropic consolidated triaxial tests(CKoUC) were performed to examine the overconsolidation phenomenons. Based on the carbon age dating results and profiles of geochemical properties, porewater chemistry, salinity and pH, it was founded that the upper silt/clay complex layer was deposited under marine condition while sand and clay layers were deposited under fluvial condition. Planar laminated structures of silts and clays were dominant in marine deposits. Although there was no clear evidences that geological erosion had been occurred in marine deposits, overconsolidation ratio obtained from oedometer tests were greater than unity. Stress paths of samples behaved similar to those of normally consolidated clays. Data plotted in stress state charts proposed by Burland(1990) and Chandler(2000) showed that the marine deposits were geologically normally consolidated. These apparent overconsolidations can be explained by the fabric and chemical bonding due to the difference of the rate of deposition.

  • PDF

Comparison of Compressibility between the Oedometer Tests with the Field Measurements in Namak Clay (계측결과를 이용한 남악점토의 압축특성 비교)

  • Kim, Dongbeum;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.15-20
    • /
    • 2008
  • Compressibility of the marine clay was mainly studied velocity of consolidation and numerical analysis by this time but studies of reevaluated from the field measurement data was a little. For last three years, areal fills and extensive field instrumentations including settlement and pore water pressure were performed in the site of the Youngsan River estuary site, South Korea. From the settlement data, field consolidation curves for sub-layers were reconstructed. Effective surcharge loads during the staged loadings were calculated using the fill heights and the excess pore water pressures in the ground. In the numerical analysis (PLAXIS), prefabricated vertical drains were also simulated. Laboratory, field, and numerical analysis showed good agreements in compressibility. Due to different conditions and limitations of the clay was the same range of the oedometer tests.

  • PDF

A Study on Measuring the Coefficient of Earth Pressure at Rest II (정지토압계수 측정에 관한 연구 II)

  • SONG MU-HYO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.58-69
    • /
    • 2004
  • In order to investigate the characteristics of the lateral earth pressure at rest, under hysteretic $K_o-loading/unloading$ conditions, seven types of multi-cyclic models have been studied, using dry sand. For this study, the new type of $K_o-oedometer$ apparatus was developed, and the horizontal pressure was accurately measured. The multi-cyclic models consist of primarily 3 cases: (i) $K_o-test$ under the same loading / unloading condition, (ii) multi-cyclic loading / unloading $K_o-test$ exceeding the maximum pre-vertical stress, and (iii) multi-cyclic loading / unloading $K_o-test$ within the maximum pre-vertical stress. Results fromthe multi-cyclic model indicated that a single-cyclic model could be extended if the exponents for the unloading condition $(\alpha\;and\;\alpha^*)$ and the reloading coefficients $(m_r,\;and\;m_r^{\ast})$ were primarily dependent upon the type of model, number of cycles, and the relative density.

Modelling the hydraulic/mechanical behaviour of an unsaturated completely decomposed granite under various conditions

  • Xiong, Xi;Xiong, Yonglin;Zhang, Feng
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.75-87
    • /
    • 2021
  • Because the hydraulic/mechanical behaviour of unsaturated soil is more complicated than that of saturated soil, one of the most important issues in modelling unsaturated soil is to properly couple its stress-strain relationship with its water retention characteristics. Based on the results of a series of tests, the stress-strain relationship and the changes in suction and saturation of unsaturated completely decomposed granite (CDG, also called Masado) vary substantially under different loading/hydraulic conditions. To precisely model the hydraulic/mechanical behaviour of unsaturated Masado, in this study, the superloading concept was firstly introduced into an existing saturated/unsaturated constitutive model to consider the structural influences. Then a water retention curve (WRC) model considering the volumetric change in the soil, in which the skeleton and scanning curves of the water retention characteristics were assumed to shift in parallel in accordance with the change in the void ratio, was proposed. The proposed WRC model was incorporated into the constitutive model, and the validity of the newly proposed model was verified using the results of tests conducted on unsaturated Masado, including water retention, oedometer and triaxial tests. The accuracy of the proposed model in describing the stress-strain relationship and the variations in suction and saturation of unsaturated Masado is satisfactory.

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test (압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.

A Study on Consolidation Characteristics of Remolded Clay due to the Liquid Limit (액성한계에 따른 재성형 점토의 압밀특성에 관한 연구)

  • Lim, Hyeongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.67-74
    • /
    • 2014
  • In this study, a constant rate of strain test (CRS) and oedometer test was performed in order to study the consolidation characteristics to the liquid limit using a re-shaped clay which was preconsolidated at a constant pressure. Consolidation samples were made of kaolinite which was mixed with bentonite of 6 %, 9 %, 12 % and 15 % of it by weight and the test value of liquid limit of samples were appeared in 77 %, 84 %, 88 % and 91 % respectively. And then consolidation samples which were agitated sufficiently adding distilled water 2 times of liquid limit were preconsolidated in the condition of a constant pressure of 0.2 MPa. The oedometer test which is commonly used recently and the consolidation test of constant rate of strain which were applied in 0.001 %/min, 0.004 %/min, 0.01 %/min rate of strain according to ASTM, D4186-82 were performed and the preconsolidation pressures were compared and analyzed at 0.2 MPa preconsolidated pressure. As a result, in the case of low value of liquid limit, preconsolidation pressure was appeared same as 0.2 MPa preconsolidated pressure at the high speed strain rate, and in the case of high value of liquid limit, preconsolidation pressure was appeared same as 0.2 MPa preconsolidated pressure at the low speed strain rate.

Characteristics of Material Function Related to Permeability and Compressibility for Soft Clay Ground (투수 및 압축에 대한 연약 점토지반의 물질함수 특성)

  • Lee, Song;Jeon, Je-Sung;Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.183-194
    • /
    • 2004
  • It's essential process to study non-linear material function related to characteristics of compressibility and permeability when we predict the consolidation behavior of soft clay ground. In this study, laboratory tests were conducted to find out the material function using marine clay. Standard oedometer test and Rowe cell test were performed with conditions, which were classified into vertical drainage only, radial drainage only and vertical-radial drainage case. Modified oedometer test equipment was developed to find out the material function and special extrusion device was originated to minimize the sample disturbance effect. Reliability of the results in modified oedometer test could be confirmed by comparing with the Rowe cell's one. Effective stress - void ratio - permeability relations were analyzed using all testing results. As a result, void ratio with effective stress level could be expressed by the power function and permeability with void ratio could be expressed by exponential function. In soft clay with high initial water content and low shear strength, non-linear characteristics related to compressibility and permeability varied with wide range by the effective stress levels. It's important to note that non-linearity of the material function should be considered at prediction of the consolidation behavior.