• Title/Summary/Keyword: odor reduction

Search Result 179, Processing Time 0.022 seconds

Effects of superheated steam treatment on volatile compounds and quality characteristics of onion (과열 증기 처리에 따른 양파의 향기 성분 및 품질특성)

  • Lee, Mi-Hyun;Lee, Kyo-Youn;Kim, Ahna;Heo, Ho-Jin;Kim, Hyun-Jin;Chun, Ji-Yeon;Choi, Sung-Gil
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.369-377
    • /
    • 2016
  • This study was conducted to investigate the effects of superheated steam (SHS) on volatile compounds and the quality characteristics of onion. Onion samples were treated by SHS at various steam temperatures ($100{\sim}300^{\circ}C$) for 1 min. Thiosulfinates and pyruvic acid were reduced by SHS treatment. The absorbance values obtained for thiosulfinates, the odor-causing compounds in onions, treated by were 0.889, 0.085, 0.049, 0.049, and 0.045, while that of the untreated control sample was 1.587. The pyruvic acid contents of onions treated by SHS were 7.57, 5.85, 1.66, 0.47, and 0.26 mg/mL, while that of the untreated control sample was 8.00 mg/mL. Volatile compounds such as, dipropyl trisufide, 1,3-propanedithiol, methyl thiirane, methyl propyl trisulfide, diallyl disulfide, 1-(methylthio)-1-propene, 1,1-thiobis-1-propene, 1,1-sulfinyl bispropane, dimethyl tetrasulfide, methyl propenyl disulfide, dimethyl trisulfide, and diallyl disulfide were reduced by SHS treatment. The results showed that antioxidant activities in the of onion samples were improved by SHS treatment. The hardness and chewiness of onions treated by SHS were significantly lower than those of the untreated control onion sample. Sensory evaluation suggested that SHS could help lower off-flavors in and enhance the palatability of onions. These results suggest that the application of SHS treatment to onions can decrease their off-flavors, change their textural attributes, and promote their sensory properties.

Growth Characteristics of Blue-green Algae (Anabaena spiroides) Causing Tastes and Odors in the North-Han River, Korea (북한강 수계에서 이취미를 유발하는 남조류(Anabaena spiroides)의 증식 특성)

  • You, Kyung-A;Byeon, Myeong-Seop;Youn, Seok-Jea;Hwang, Soon-Jin;Rhew, Doug-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.135-144
    • /
    • 2013
  • Blue-green algae blooms occurred during early winter in the North-Han River, Korea. Among blue-green algae, Anabaena spiroides were observed for approximately 33 consecutive days, between 28 November and 30 December, 2011. A. spiroides emerged from Lake Uiam to Lake Paldang, depending on the flow of the river has spread downstream. Changes of physical water environment like rising water temperature and increasing hydraulic retention time influenced the A. spiroides bloom. The A. spiroides bloom showed a very rapid increase in cell density, and a slow decrease: the cell density increased to a maximum of $11,325cells\;mL^{-1}$ in Lake Paldang (st. 5), and was completely disappeared after the water temperature dropped below $4^{\circ}C$. A decrease in water temperature was the most influential factor among all environmental parameters, for the reduction of A. spiroides cell density. The A. spiroides bloom was accompanied with the occurrence of very high concentrations of the odor metabolite geosmin. Geosmin reached the peak value of $1,640ng\;L^{-1}$ in Lake Paldang (st. 4). The geosmin concentration was very strongly correlated with cell numbers of A. spiroides.

Study on the Sediment Quality in Bottom Water (I) (수 저층의 저질 조사 (I) - 저질 조사의 중요성과 분석에 관하여 -)

  • Kim, Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.93-102
    • /
    • 2007
  • Particle materials sink in bottom and dissolved inorganic substances release from sediment and many kinds of materials continuously exchange in sediment and water column as well as transfer and transformation in sediment. The study of sediment quality means the state of sediment pollution relation of the water quality, sediment biota, materials fluxes between sediment and water column, transformation of materials in sediment is being important in recent. The state of sediment quality imply that the history of water pollution for long time, because the sediment quality does not change temporally. The sediment quality of bottom water can be used as a good indicator of pollution at present and in future. The major index of sediment qualities are the content of nutrients and hazard materials such as metals, Ignition Loss (IL), Total Sulfur (TS), Oxidation Reduction Potential (ORP), sediment COD, color, odor and the release of nutrients from sediment. However, there are some arguments between researchers about compare to estimation of sediment quality and sampling and analysis of sediment. In this study, I will introduce the method of sediment sampling, analyzing and estimating of the sediment pollution.

  • PDF

Estimation on the Contribution of VOCs and Nitric Oxides in Creating Photochemical Ozone (휘발성유기화합물과 질소산화물의 오존생성 기여도 평가에 관한 연구)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • The fifty six components of volatile organic compounds(VOCs) were continuously measured by the hour to see the distributions their of its concentration and the ozone creating contribution of nitric oxides and VOCs in Gamjeon Odor and VOCs Monitoring Network from April to September, 2008. Aromatics occupied 51.3% of VOCs and paraffins, alkanes and olefins came in order. The monthly concentration of VOCs in Gamjeon was high in July and low in September. As for hourly concentration of ozone and nitric oxides, ozone started to increase since 10am having the highest in the daytime, and nitric oxides had the different trend from that of ozone, showing the lowest in the daytime. The photochemical ozone creating potentials(POCPs) of toluene, propane, m/p-xylene, ethylbenzene, and 1,2,4-trimethylbenzene were 30.6%, 10.2%, 9.4%, 7.4% and 5.2% respectively. These five components occupied 62.8% of total POCPs, which means they contributed to the ozone creation mainly. Related with the ozone creating contribution, the ratio of VOCs to NOx was generally under 6 occupied 72.0%, which came under the area coexisting the limit of VOCs. Therefore it is thought that the management of emission source of VOCs is very important for the reduction of ozone.

Combined Effects of Low-Temperature Heating and Atmospheric Plasma on the Populations of Escherichia coli and Sensorial Quality of Red Pepper Powder (저온살균과 대기압플라즈마의 병용처리에 의한 고춧가루 중 대장균의 저감화 효과 및 관능적 품질)

  • Jeon, Eun Bi;Choi, Man-Seok;Kim, Ji Yoon;Park, Shin Young
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.68-74
    • /
    • 2020
  • This study investigated the inactivation and synergistic efficacy of combined low-temperature heating (LT) and atmospheric plasma (AP) against Escherichia coli in red pepper powder. A cocktail of two strains of E. coli (ATCC 11229, KCCM 11234) was inoculated onto red pepper powder and then treated with LT (60℃ for 5-20 min) and AP (atmospheric plasma for 5-20 min). The counts of E. coli in the red pepper powder were significantly (P<0.05) reduced with the increase in treatment time using LT and AP. The reduction of E. coli levels in red pepper powder when treated with LT alone for 5, 10, 15, and 20-min were 0.25, 1.45, 2.54, and 2.85 log10 CFU/g, respectively. Also, the reduced levels of E. coli on red pepper powder when treated with AP alone for 5, 10, 15, and 20 min were 0.19, 0.32, 0.54, and 0.96 log10 CFU/g, respectively. The synergistic effects were not dependent on the treatment time with AP, but were dependent on the LT treatment time. Synergistic reduction values for combined LT and AP treatment against E. coli in red pepper powder were -0.13 to 2.91 log10 CFU/mL, respectively. Especially, the largest synergistic values (2.91-2.82 log10 CFU/mL) of E. coli in red pepper powder were revealed by the combination of a 20-min treatment with LT and a 15-20-min treatment with AP. All sensory parameters (color, off-odor, taste, texture, and overall acceptability) were not significantly (P>0.05) different between non-treated and all combination-treated samples. Therefore, these results suggest that the combination of LT and AP can be potentially utilized in the food industry to effectively inactivate E. coli without incurring quality deterioration in red pepper powder.

Antimicrobial and Antioxidant Activity of Grapefruit and Seed Extract on Fishery Products (수산물에 대한 Grapefruit 종자추출물의 항균 및 항산화효과)

  • CHO Sung-Hwan;SEO Il-Won;CHOI Jong-Duck;JOO In-Saeng
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.289-296
    • /
    • 1990
  • The antimicrobial and antioxidant activities of grapefruit seed extract(GFSE), which was extracted with glycerine in the special schematic extraction apparatus, were investigated for handling and processing of fishery products. The effectivity of GFSE has been tried on sardine, mackerel and shrimp divided into six lots for each fishery product: control(no treatment) and five GFSE-treated samples. Samples were inoculated with Salmenella typhi, incubated for 24hrs at $30^{\circ}C$ in dextrose-tryptone broth medium and prepared for microbiological 8f chemical analysis and organoleptic assessment. The bacteriological analytical results with GFSE(250ppm) showed the reduction of $1.8\times10^6\to2.0\times10^4,\;1.9\times10^6\to1.8\times10^4$ and $1.6\times10^6\to2.7\times10^3$ in total bacterial count for sardine, mackerel and shrimp, respectively. The test results with GFSE(500ppm) showed a $100\%$ reduction of bacterial mackerel treated with GFSE(500ppm) was reduced to $1.1\times10^4$ and $9.0\times10^3$ respectively. Antioxidant effect of treatment with GFSE at 500ppm level for three products was significant. LSD test results on organoleptic parameter for the samples treated with various showed a significant influence on the appearance, odor and texture in which at concentration 500ppm level give the excellent scours compared to each control.

  • PDF

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Quality Stability of Oleoresin Onion (양파 Oleoresin의 저장중 품질 변화)

  • 최옥수;배태진
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.179-184
    • /
    • 1998
  • As a way of mass process of onion, Allium cepa L., the oleoresin decompressed and concentrated is an alternative process to minimize lowering in the quality of onion during storage, to improve the original flavor and taste, and to increase variety as processing aids. This study was performed to investigate on the quality stability during storage of oleoresin. Oleoresin product was manufactured by mixing a concentration of onion juice and ethanol extract homogenously, emulsified by an additional 2% PGDR(polyglycerol condensed ricinoleate) and 1% cysteine. During 60 days storage at 5$^{\circ}C$, $25^{\circ}C$ and 4$0^{\circ}C$ the total sugar content in oleoresin product was very stable, and absorbances at 420nm as browning reaction index were 0.38, 1.53 and 3.32, respectively, addition of 1% cysteine retarded the browning reaction effectively. When oleoresin product was centrifuged(2000$\times$G, 60 minutes), the volumes of emulsion level without separation were 96.8%, 94.1% and 9.06%, respectively during 20 days, 40 days and 60 days storage at 5$^{\circ}C$, and those during 60 days storage at $25^{\circ}C$ and 4$0^{\circ}C$ were appeared to be 83.2% and 75.4%. Showing lower level as increasing storage temperature. Antioxidant indexes(AI) of soybean oil added 1% oleoresin without storage and 0.02% BHA were 1.39 and 1.72. The former showed 80.8% antioxidant activity on induction time extension effect of the latter. Antioxidant indexes of oleoresin decreased slightly as increasing storage temperature and were 1.37, 1.30 and 1.08. Total pyruvate contents were 89.9%, 79.7% and 65.2%, respectively during 60 days storage at 5$^{\circ}C$, $25^{\circ}C$ and 4$0^{\circ}C$. Rate constant, Q10 value and activation energy were 1.381~4.735 mmol/$\ell$.hr, 1.537~1.694 and 11.649 ㎉/g mole for the reduction of pyruvates in the range of storage temperatures during oleoresin storage.

  • PDF

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.