• Title/Summary/Keyword: odor emission rate

Search Result 31, Processing Time 0.019 seconds

Simple Prediction of Odor Affection by Odor Emission Rate from a Chemical Plant (화학공장의 악취배출량으로부터 간이 악취 영향도 예측 사례)

  • 유미선;양성봉;이오근
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.383-389
    • /
    • 2002
  • Odor sources of a chemical plant in Ulsan were surveyed and temperatures, humidities and flow rates of each exhaust gas were measured. The air samples collected from each source were transferred to the laboratory for sensory test and their odor concentrations were investigated. The odor emission rate of each source was estimated from the recorded results and assigned the sources expected to be needed for the odor prevention policy using the simple prediction equation of the affection by malodor to the nearest residential area. From the total odor emission rate of the examined plant and the relation table for expectable affection area it was concluded that total odor emission of this plant might be decreased for the prevention of residential complaint.

A Case Study for Reasonable Emission Regulation of Odor Exhaust Stack (악취 배출구의 합리적인 배출규제를 위한 사례연구)

  • Park, Jeong-Ho;Lee, Hyung-Chun
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.155-161
    • /
    • 2016
  • In this study, field experiment, odor simulator, and dispersion modeling were used to evaluate the odor impact from J sewage sludge treatment facility. The height and flow rate of exhaust stack at this facility were 22.3 m and $100Nm^3/min$. The mean odor concentrations of the wet scrubber inlet and exhaust stack were $267{\pm}160$ and $93{\pm}44OU/m^3$, respectively. The odor removal efficiency of wet scrubber showed 65%. The odor simulator is used for the regulated standard calculation of the exhaust pipe(stack). Resulting odor emission rate(OER) by odor simulator was $2.4{\times}10^6(24,000OU/m^3)$. The forecasting result by Screen3 modeling showed that odor exhaust concentration up to $30,000OU/m^3$ was't exceeded maximum allowable emission level on site boundary($15OU/m^3$).

Estimation of Odor Emissions from Industrial Sources and Their Impact on Residential Areas using the AERMOD Dispersion Model (AERMOD 모델을 이용한 산단 지역 악취 배출량 및 주거지역 영향 범위 평가)

  • Jeong, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this study, the AERMOD dispersion model was used for predicting odor concentrations and back-calculating industrial area source odor emission rate. The studied area was Sihwa industrial complex in Korea. Odor samples were collected during two days over a year period in 2009. The comparison between the predicted and observed concentrations indicates that the AERMOD model could fairly well predict average downwind odor concentrations. The results show odor emission rates of Sihwa industrial complex area source were ranged from 0.204 to 2.320 $OUms^{-1}$ (average 0.476 $OUms^{-1}$). The results also show wind speed and direction are important parameters to the odor dispersion.

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

CALPUFF and AERMOD Dispersion Models for Estimating Odor Emissions from Industrial Complex Area Sources

  • Jeong, Sang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study assesses the dispersion and emission rates of odor form industrial area source. CALPUFF and AERMOD Gaussian models were used for predicting downwind odor concentration and calculating odor emission rates. The studied region was Seobu industrial complex in Korea. Odor samples were collected five days over a year period in 2006. In-site meteorological data (wind direction and wind speed) were used to predict concentration. The BOOT statistical examination software was used to analyze the data. Comparison between the predicted and field sampled downwind concentration using BOOT analysis indicates that the CALPUFF model prediction is a little better than AERMOD prediction for average downwind odor concentrations. Predicted concentrations of AERMOD model have a little larger scatter than that of CALPUFF model. The results also show odor emission rates of Seobu industrial complex area were an order of 10 smaller than that of beef cattle feed lots.

Analysis of Field Measured Odor Emission Rate in Pig Houses (국내 돈사 악취 방출량 측정 결과 분석)

  • Decano-Valentin, Cristina;Lee, In-bok;Yeo, Uk-hyeon;Jeong, Duek-young;Lee, Sang-yeon;Park, Se-jun;Cho, Jeong-hwa;Lee, Min-hyeong;Jeong, Hyohyeog;Kim, Da-in;Kang, Sol-moe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • Odors emitted from pig houses have been a constant root of legal issues in pig farming. These gases are among the main causes of health and mental stresses to nearby communities, so policymakers and researchers continuously study to reduce the concentration of odorous gases from pig facilities. A continuous field experiment proved that the concentration of odor emissions inside the pig houses is highly dependent on ventilation rate, breeding details, and animal activities. However, the standard odor emission rate worldwide widely varies due to differences in pig house designs and ventilation requirements. Thus, this study aimed to measure the odor emission rates, considering the actual condition of selected Korean pig houses, through field measurement. The odor measurements were performed at three different pig production facilities without odor abatement technologies. The target experimental pig houses were buildings for weaning, growing, and fattening pigs. Results showed that the actual ventilation rate in target pig houses falls below the standard ventilation requirement of pigs, resulting in high odor concentrations inside the pig houses.

Evaluation of the Odor around an Industrial Complex Area and the Operational Effects of the Odor Monitoring System in Seo-gu, Daegu City (대구시 서구 산업단지 주변 지역의 악취오염도와 악취감시시스템 운영 평가)

  • Lee, Myeong-Sug;Keum, Jong-Lok;Kang, Dong-Hoon;Jo, Hang-Wook;Kwon, Byoung-Youne;Kim, Eun-Deok;Lee, Chan-Hyung;Song, Hee-Bong;Shin, Sang-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.45-54
    • /
    • 2021
  • Objectives: This study evaluated the odor around an industrial complex area (#1-#5) and the operational effects of the Odor Monitoring System in Seo-gu in Daegu City. Methods: Samples were collected from November 2012 to December 2018 and were analyzed for complex odor. The odor occurrence rate and the odor reduction rate were calculated. Results: In 2018, the mean concentration of complex odor decreased 20.9% and the odor occurrence rate decreased from 65.0 to 27.5% around the industrial complex area (#1-#5) in Seo-gu compared to 2013. After the operation of the Odor Monitoring System, the standard excess rate (3.0%→40.8%) and the excess concentration of complex odor (1,442→4,304) increased at odor-emitting workplaces. In addition, the mean concentration of complex odor (15.9%) and the odor occurrence rate (60.6%→32.9%) around the industrial complex area (#1-#5) and the number of odor complaints (23.4%) in Seo-gu decreased. Conclusion: In order to reduce the odor around the industrial complex area, it is important to improve the odor emitting facilities. The Odor Monitoring System uses scientific and systematic monitoring methods that can help control and manage the odor emission facilities.

A Study on the Odor Removal Control System of Sewage Sludge

  • KIM, Su-Hye;LEE, So-Hee;YUN, Yeo-Jin;CHOI, Soo-Young;JUNG, Min-Jae;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • Purpose: The purpose of this study is to reduce odor complaints by identifying problems with odor management at the site of the water regeneration center and researching odor management methods. Due to the high population density of Korea, sewage treatment facilities are adjacent to residential and industrial areas. According to previous studies, the main malodor-emitting facilities of sewage treatment facilities were preliminary treatment facilities (2,220 times), sedimentation basins (4,628 times), and sludge treatment facilities (9,616 times). Research design, data and methodology: Compound malodors and designated malodor-producing substances were collected from five site boundaries of the water regeneration center and analyzed according to the official methods to test malodor, and a total of two times (August and September 2020) were conducted. Results: As a result of the measurement, in the green area in front of the center office, compound malodors were detected at a maximum of 8 times and at least 3 times during the dawn time. As for the designated malodor-producing substances, 0.1ppm of ammonia was detected in the green area in front of the center office and the park golf course. This is within 15 times the maximum allowable emission level of compound malodors and within 1ppm of the maximum allowable emission level of ammonia. Conclusions: Even if the dilution rate of the compound malodors did not exceed the maximum allowable emission level, the odor could be recognized, and more research is needed in the future to establish effective reduction measures according to the subjective and individual and seasonal odor characteristics.

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

Impact Analysis of Complex Odor from Pigsty by Using ISCST3 (ISCST3을 이용한 돈사의 복합악취 영향 분석)

  • Kwon, Woo-Taeg;Hong, Sang-Pyo;Lee, Woo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6602-6609
    • /
    • 2013
  • This study is expected to provide background data for establishing mitigation measures for malodor and for comparing complex odor criteria. The impact of malodor at the afflicted locations was analyzed using Industrial Source Complex Short Term 3 (ISCST3) model, which was recommended by the EPA. The Odor Emission Rates (ODR) for piglets and hogs were predicted based on the average, minimum, and maximum emission rates as classification. The forecasting result of the complex odor modelling of pigsty showed that tolerance limit was exceeded at an adjacent administration building, but tolerance limit was not surpassed at an afflicted location which was within 185m from the pigsty. The ISCST3 modelling of the satisfactory ODR for tolerance limit was accomplished at the administration building. From the prediction of this modelling, maximum emission rates based on 1hr at administration building were 10.59~52.93, 19.05~31.76, and 10.59 $OU/m^3/s/m^2$ at emission rates of 50%, 30%, and 10%. This emission rate was slightly higher than the tolerance limit of 10.00 $OU/m^3/s/m^2$. However, it was inferred that the tolerance limit could be satisfied if the emission rate of 10% was controlled.