• Title/Summary/Keyword: ocular exposure

Search Result 35, Processing Time 0.028 seconds

A Study on Monitoring Techniques for Dermal Exposure to Hazardous Chemicals

  • Lee, Su-Gil;Lee, Nae-Woo
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • Due to dermal exposure to hazardous chemicals causing potential adverse health symptoms through skin absorption, dermal monitoring has had an important role in assessing such exposure. This paper overviews comparatively a number of studies of dermal monitoring with different methodologies such as surface monitoring, skin wiping, skin washing, adhesive methods and tape stripping, fluorescence and infrared spectroscopy, skin patches, pads and clothing, video exposure monitoring and dermal exposure assessment toolkits and models. However, there is a lack of information on the relationship between exposure levels and adverse health symptoms. Therefore, more specific strategies for dermal exposure monitoring should be developed and standardized with further development of biological and ocular monitoring.

A Study of Dermal and Ocular Exposure to Isocyanate-Based Paints in Crash Repair Workshops (차량수리업에서 사용하는 이소시안계 페인트에 의한 피부와 눈의 노출에 관한 연구)

  • Lee, Su-Gil;Pisaniello, Dino;Lee, Nae-Woo;Tkaczuk, Michael
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.72-78
    • /
    • 2009
  • Exposure to HDI(hexamethylene di-isocyanate) commonly used in vehicle crash repair workshops remains a leading cause of occupational asthma. Although skin and eye contamination are considered as absorption routes, there are no occupational exposure standards for skin and ocular exposure. This is the reason why there are more empirical data should be provided. Therefore this study was to determine contamination levels of HDI on the skin, eyes, work surfaces, respirators and eye protectors. There was evidence of contamination on a variety of work surfaces, for example, door handles, bench top and spray gun, etc. A high proportion(47~80%) of skin wipe samples from neck, forehead, back hand, palm and wrist was positive for HDI contamination, even though spray time was relatively brief. The contamination levels from spraying inside spray booth were generally higher than outside booth due to poor work practices and inappropriate personal protective use like safety gloves. Apprentices had higher exposure levels than the qualified painters, likely due to lack of the recognition of safety and hygiene. The extent of contamination inside the PPE might provide an indication of the potential for respiratory & skin exposure and ocular exposure. Eye fluid samples from 4 out of 14 workers had the positive detection of HDI contamination, due to poor work practices like no or inappropriate eye protection. Considering the potential for dermal & ocular exposure to contribute to possible health symptoms including respiratory sensitization, the empirical data point to a need for improving work practices and appropriate PPE selection, use and maintenance.

Effects of Various Laser Wavelengths and Power Densities on the Ocular Damage in Pigmented Rats

  • Chung, Phil-Sang;Shin, Jang-In;Chang, Moo-Hwan;Chang, So-Young;Kang, Jung-Wook;Hwang, Hee-Jun;Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • With the widespread use of laser in medical and industrial settings, the incidence of laser injury to the ocular continues to grow among workers involved in handling lasers. The aim of this study is to compare ocular damages after irradiation with various laser wavelengths and power density. Ocular of pigmented rats was irradiated with $CO_2$ laser, 1064 nm Nd:YAG laser, and 532 nm diode laser. We observed damage of cornea, lens, and retina using slit lamp microscope and funduscopy. H&E staining of histopathology were applied to study the specimens. The higher exposure ($200mW/cm^2$, 10 sec) with $CO_2$ laser resulted in severe damage at the cornea. For the 1064 nm Nd:YAG laser, the higher exposure than $10mW/cm^2$ (10 sec) resulted in damage at the cornea and lens. Further, with the 532 nm diode laser, retinal lesions were induced when $10mW/cm^2$ (0.25 sec) was delivered to the eye. Theses results suggest that the ocular damages are different from various laser wavelength and power density.

  • PDF

Evaluation of Exposure to Isocyanates Used in Furniture Industry (가구산업에 사용되는 이소시안화물 폭로에 대한 평가)

  • Lee, Su-Gil;Lee, Nae-Woo;Pisaniello, Dino. L
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.138-142
    • /
    • 2006
  • Occupational asthma is commonly known to be induced by isocyanate exposure. Spray painters generally use isocyanates for 2-pack spray painting to coat wooden panel surfaces in the furniture industry in South Australia. Due to a lack of actual exposure data, this study conducted environmental and dermal/ocular monitoring from a company in the furniture industry. According to this study, there was no significant airborne contamination, due to the use of high volume low pressure (HVLP) spray guns, low concentration of hardener in paint solutions and appropriate respirator like full face-air line respirator. There was no significant HDI detection in the general work area around the spray booths. Owing to the use of disposable nitrile gloves during the spray painting, no significant dermal exposure was found. According to color monitoring, there was a possible dermal exposure from surfaces in the workplace, unless either protective gloves were worn or appropriate working practices like clean-up process and storage in a secure places. No eye contamination was detected from the spray painters. No significant exposure levels from inhalational, dermal, ocular were found. The area of most concern was work practices.

Recent Advances in Understanding the Mechanisms of Particulate Matter-mediated Ocular Diseases (미세먼지에 의한 안구질환 발병 연구 동향)

  • Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.722-730
    • /
    • 2020
  • As one of the most serious health risk factors, air pollution can no longer be ignored. Particulate matter (PM) is an important and harmful component of air pollution that originates from a variety of sources. Numerous recent studies have linked PM to a range of conditions including cancer, cardiovascular, respiratory, and skin disease. The eye, despite being directly exposed to air pollution, has been investigated in very few of these studies. In this review, we describe the evidence from in vitro and in vivo studies, as well as epidemiological investigations, that supports the association between exposure to PM and the development of ocular conditions such as surface and retinal disease and glaucoma. Based on the results of previous studies, we suggest that PM exposure can lead to oxidative stress, inflammation, autophagy, and, ultimately, ocular surface disease. Nevertheless, almost no studies focus on ocular surface damage from PM while some epidemiological and clinical studies report on the posterior of the eye. However, the underlying pathological mechanisms in the posterior following PM exposure have yet to be identified, and further studies are therefore warranted of the ocular surface as well as the posterior part of the eye.

Importance of Oxidative Stress in Ocular Dysfunction (안구의 기능이상에 대한 산화스트레스의 중요성)

  • Lee, Ji Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.103-109
    • /
    • 2008
  • Purpose: This review illustrates an importance of oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation in association with eye disease, especially of cataract, and discusses an important role of lipid peroxide as a mediator of oxidative stress-related ocular dysfunction. Methods: Oxidative stress, resulted from the cellular production of ROS and RNS, is known to cause various forms of cellular damages such as protein oxidation, DNA breaks, apoptosis, and lipid peroxidation. These damages can be developed to human diseases. Accumulating evidence strongly suggests that continuous or constant exposure of eye tissues to oxidative stress is a main cause of cataractogenesis. Therefore, we investigated the action of oxidative stress in ocular dysfunction. Results: The ocular lens is continuously attacked by ROS inevitable generated from the process of cellular metabolism and the chronic exposure to ultraviolet. Excessive generation of ROS, resulting in degradation, oxidation, crosslinking and aggregation of lens proteins, is regarded as an important factor in development of cataract. Conclusions: These oxidative stress and oxidant/antioxidant imbalance produces the excess ROS which can lead to eye dysfunction. Even though known results, it should be noted that there is limited information on the molecular mechanism which can be better defined with the interrelation of oxidative stress and optic abnormalities.

  • PDF

Pharmacokinetics of Uridine Following Ocular, Oral and Intravenous Administration in Rabbits

  • Kim, Eunyoung;Kang, Wonku
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.170-172
    • /
    • 2013
  • The pyrimidine nucleoside uridine has recently been reported to have a protective effect on cultured human corneal epithelial cells, in an animal model of dry eye and in patients. In this study, we investigate the pharmacokinetic profile of uridine in rabbits, following topical ocular (8 mg/eye), oral (450 mg/kg) and intravenous (100 mg/kg) administration. Blood and urine samples were serially taken, and uridine was measured by high-performance liquid chromatography-tandem mass spectrometry. No symptoms were noted in the animals after uridine treatment. Uridine was not detected in either plasma or urine after topical ocular administration, indicating no systemic exposure to uridine with this treatment route. Following a single intravenous dose, the plasma concentration of uridine showed a bi-exponential decay, with a rapid decline over 10 min, followed by a slow decay with a terminal half-life of $0.36{\pm}0.05$ h. Clearance and volume of distribution were $1.8{\pm}0.6$ L/h/kg and $0.58{\pm}0.32$ L/kg, respectively. The area under the plasma concentration-time curves (AUC) was $59.7{\pm}18.2{\mu}g{\cdot}hr/ml$, and urinary excretion up to 12 hr was ~7.7% of the dose. Plasma uridine reached a peak of $25.8{\pm}4.1{\mu}g/ml$ at $2.3{\pm}0.8$ hr after oral administration. The AUC was $79.0{\pm}13.9{\mu}g{\cdot}hr/ml$, representing ~29.4% of absolute bioavailability. About 1% of the oral dose was excreted in the urine. These results should prove useful in the design of future clinical and nonclinical studies conducted with uridine.

Assessing the Systemic Toxicity in Rabbits after Sub Acute Exposure to Ocular Irritant Chemicals

  • Reshma, Cherian Sebastian;Sruthi, Sudhakaran;Syama, Santhakumar;Gayathri, Vishwanath;Mohanan, Parayanthala Valappil
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.49-59
    • /
    • 2015
  • Eye is a highly vascularised organ. There are chances that a foreign substance can enter the systemic circulation through the eye and cause oxidative stress and evoke immune response. Here the eyes of rabbits were exposed, for a period of 7 days, to 5 known ocular irritants: Cetyl pyridinium chloride (CPC), sodium salicylate (SS), imidazole (IMI), acetaminophen (ACT) and nicotinamide (NIC). The eyes were scored according to the draize scoring. Blood collected from the treated rabbit were analyzed for haematological and biochemical parameters. After sacrifice, histological analysis of the eye and analysis of pro-inflammatory biomarkers ($IL-1{\alpha}$, $IL-1{\beta}$, IL-8 and $TNF-{\alpha}$) in the cornea using ELISA was carried out. Spleen was collected and the proliferation capacities of spleenocytes were analyzed. Liver and brain were collected and assessed for oxidative stress. The eye irritation potential of the chemicals was evident from the redness and swelling of the conjunctiva and cornea. Histopathological analysis and ELISA assay showed signs of inflammation in the eye. However, the haematological and biochemical parameters showed no change. Spleenocyte proliferations showed only slight alterations which were not significant. Also oxidative stress in the brain and liver were negligible. In conclusion, chemicals which cause ocular irritation and inflammation did not show any systemic side-effects in the present scenario.

Four Cases of Dysphonia due to Acute Exposure to Chlorine by a Swimming Pool Accident (수영장에서 염소 가스에 노출된 후 발생한 음성장애 4예)

  • 김지연;고영민;김정연;정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.129-132
    • /
    • 2003
  • Chlorine gas is highly irritating gas that, when inhaled, can damage larger airways as well as distal lung structure. It occurs usually result in mild ocular, oropharyngeal, or respiratory symptom and recovery may proceed slow for several weeks. We reported four cases of dysphonia due to acute chlorine inhalation during a swimming pool accident were treated by voice therapy and medication.

  • PDF

The Study on the Laser in the Safety Device for Dangerous Machine (위험기계 방초장치에 적용되는 레이저에 관한 연구)

  • 이충렬;김창봉
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • The safety device of infrared type for dangerous machine being used currently has a harmful effect on human's eye and skin. In this paper we explain about the characteristics of lasr source and analyze the amount of harmfulness on human's eye by simulation method. We used the datas given by ANSI in this simulation.