• Title/Summary/Keyword: octenyl succinic anhydride

Search Result 6, Processing Time 0.021 seconds

Physicochemical, pasting, and emulsification properties of octenyl succinic anhydride modified waxy rice starch (옥테닐 석시닐 무수물 변성찹쌀녹말의 이화학, 호화 및 유화특성)

  • No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.463-468
    • /
    • 2017
  • Waxy rice starch purified from Hwaseonchal white rice was modified by octenyl succinic anhydride (OSA) for use as an emulsifier. OSA-modified starches (1, 2, and 3% OSA, pH 8.5, 6 h) were investigated to understand their physicochemical and pasting properties, and emulsion stability. The degree of substitution (DS) of 1, 2, and 3% OSA starches was 0.0062, 0.0182, and 0.0214, respectively. FT-IR spectroscopy showed that OSA starches showed weak peaks at 1724 and $1572cm^{-1}$ and the peak at $3300cm^{-1}$ was reduced by an increase in the DS. Native and OSA starches showed A type crystallinity and a similar granular size. The OSA starch increased the peak viscosity, but decreased the onset and peak temperatures, and enthalpy with an increase in OSA concentration. The creaming index of emulsion of OSA starches decreased with an increase OSA concentration. It was suggested that the emulsion stabilizing capacity of OSA waxy rice starches increased with an increase in the OSA concentrations.

Emulsifying Properties of Octenyl Succinic Anhydride Modified β-Glucan from Barley (옥테닐 호박산 베타글루칸의 유화 특성)

  • Gil, Na-Young;Kim, San-Seong;Park, Eun-Jeong;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • We investigated the emulsifying properties of barley octenyl succinic anhydride (OSA)-${\beta}$-glucan, such as changes in the fat globule size and zeta-potential as influenced by pH or the addition of NaCl. Additional experiments to fabricate a suitable co-surfactant system were also performed. We found that the fat globule size in OSA-${\beta}$-glucan emulsions increased upon lowering the pH (i.e., under acidic conditions) or increasing the NaCl concentration. These results were confirmed through microscopic observation. Co-surfactant hydrophilic Tween 20 was found to be suitable for the OSA-${\beta}$-glucan emulsion, which facilitated the formation of smaller fat globules and enhanced the creaming stability when it was added in >0.2 wt% concentration. From the results of the surface load of OSA-${\beta}$-glucan in emulsions, Tween 20 addition enhanced the stability probably by the co-adsorption of the two surfactants at the droplet surface.

Emulsifying Properties of Gelatinized Octenyl Succinic Anhydride Modified starch from Barley (호화 옥테닐 호박산 전분의 유화 특성)

  • Kim, San-Seong;Kim, Sun-Hyung;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.174-188
    • /
    • 2019
  • The present study was carried out to investigate the emulsifying properties of heat-treated octenyl succinic anhydride(OSA) starch and the interfacial structure at oil droplet surface in emulsions stabilized by heat-treated OSA starch. First, the aqueous suspensions of OSA starch were heated at $80^{\circ}C$ for 30 min. Oil-in-water emulsions were then prepared with the heat-treated OSA starch suspension as sole emulsifier and their physicochemical properties such as fat globule size, surface load, zeta-potential, dispersion stability, confocal laser scanning microscopic image(CLSM) were determined. It was found that fat globule size decreased as the concentration of OSA starch in emulsions increased, showing a lower limit value ($d_{32}:0.31{\mu}m$) at ${\geq}0.2wt%$. Surface load increased steadily with increasing OSA starch concentration in emulsions, possibly forming multiple layers. In addition, fat globule sizes were also influenced by pH: they were increased in acidic conditions and these results were interpreted in view of the change in zeta potentials. The dispersion stability by Turbiscan showed that it was more unstable in emulsions at acidic condition. Heat-treated OSA starch found to adsorb at the oil droplet surface as some forms of membrane (not starch granules), which might be indicative of stabilizing mechanism of OSA starch emulsions to be steric forces.

Characteristics of Cationic Starches and Esterified Starches for ASA Sizing (ASA 유화용 양성전분과 에스테르화전분의 특성 평가)

  • Kim, Jong-Soo;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.16-26
    • /
    • 2008
  • It is of great importance to decrease sheet break at the size press to enhance the runnability of today's high speed paper machines. To achieve this purpose it is required to control the penetration of the starch solutions at the size press. Use of ASA sizing system provides diverse advantages in improving machine runnability since it allows us to get rapid sizing development at the size press. Domestic paper industries, however, has not enjoyed these benefits of ASA sizing system mainly because of the poor efficiency of domestic corn starches used for ASA emulsification. To improve the emulsion stability and ASA sizing efficiency, it has been pointed out that new cationic starches are needed. In this study two methods of starch modifications, i.e. esterfication of cationic corn starch with OSA (Octenyl Succinic Anhydride), and acid hydrolysis by sulfuric acid were employed as methods to improve ASA sizing efficiency. The effect of these modification was compared with conventional cationic starches.

Digestive, Physical and Sensory Properties of Cookies Made of Dry-Heated OSA-High Amylose Rice Starch (변성 고아미 쌀전분을 이용한 쿠키의 소화율과 물리적 및 관능적 특성)

  • Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.668-672
    • /
    • 2009
  • Cookies containing wheat flour mixed with 10, 30 or 50% esterified with octenylsuccinic anhydride (OSA, 3%) and dry-heated ($130^{\circ}C$, 2 hr) high amylose rice (Goami 2) starch (DH-OSAR) were prepared and then their physical and digestive properties were evaluated. When the amount of added DH-OSAR increased, the hardness and brittleness of the cookies decreased, and L (brightness) value increased. For the digestive properties, the cookies containing 50% DH-OSAR significantly increased the amount of slowly digestible starch (SDS), and decreased the amount of rapidly digestible starch (RDS), resulting in the lowest expected Glycemic Index (eGI) among tested cookies. Although the cookies containing DHOSAR were inferior to the control, the addition of xanthan gum (0.5% based on total powder amount) significantly improved their textural and sensory properties. Specially, the cookies containing 50% DH-OSAR and the addition of 0.5% xanthan gum showed the lowest eGI value, maintaining the improved textural and sensory properties.

ASA 유화용 양성전분의 소수화 및 산 처리에 의한 사이징 효과의 개선

  • 김종수;이학래
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.88-88
    • /
    • 2001
  • 최근 들어 초지기의 고속화, 원료의 저급화, 가공작업의 온라인화에 따라 초지기 상에서 안 정된 조업성이 더욱 중요하게 부각되고 있다. 이러한 초지 시스랩의 변화에 따라 사이징 효과의 발현 속도에 대한 관심이 고조되고 있다. 중성 사이징 시스템으로 ASA를 적용할 경우에는 초지기상에서 사이즈도의 대부분이 발현되기 때문에 온라인 후가공 작업의 안정성이 향상되며 사이즈프레스에서 조업성 역시 개선될 수 있을 것으로 기대된다. 본 연구에서는 가격이 저렴하고 국내 수급이 용이한 옥수수 양성전분을 ASA 유화안정제로 이용하기 위해서 OSA (Octenyl Succinic Anhydride)를 이용한 에스테르화 및 산가수분해를 통하 여 ASA 에멀션의 안정성 및 사이징 효과를 개선시킨 전분을 개발하고 그 효과를 규명하고자 하였 다. 이를 위해 전분을 FT-IR을 이용하여 분석하고 호액의 pH, 전기전도도, 전하밀도, 점도 변화 등 을 측정하였을 뿐 아니라 ASA 유화액의 pH, 전기전도도, 시간에 따른 가수분해 안정성 등을 평가 하였다. 또한 ASA 에멀션의 입도 변화 섬유에 대한 흡착특성과 수초지의 사이즈도를 평가하였다. 그 결과는 다음과 같았다. 첫째,OSA 전분의 사용에 따라 전분 호화액의 pH와 전기전도도의 변화는 나타나지 않았 다. 전하밀도는 첨가량이 증가할수록 감소하였으며 호화액의 점도는 상숭하였다. 또 OSA 전분의 적 용이 수초지의 사이즈도에는 영향을 주지 않았다. 그러나 OSA 전분을 사용하여 제조된 ASA 유화 액의 가수분해 안정성은 향상되었다. 이것은 콜로이드 상의 ASA 입자를 캡슐화 하는데 있어 소수성 을 띠고 있는 OSA 전분이 보다 강하고 안정하게 흡착하기 때문인 것으로 판단되었다. 둘째, 전분의 호화 시 H2S04을 사용하여 전분의 산 가수분해를 유도할 수 있었다. 이를 통 하여 전분 호화액의 pH는 낮아지고 전기전도도는 증가하였으나 전하밀도의 변화는 없었다. 또한 겔 화 온도가 낮아지고 저온에서의 점도가 상승하는 변화를 나타냈다. IN-H2S04를 2.3%까지 첨가하였 을 때 ASA 에멀션의 입도가 더욱 감소하였고 섬유에 대한 흡착량이 증가하였으며 수초지의 사이즈 도가 향상되었다. 특히 기존에 사용되어 오던 감자 양성전분에 비해 최대 90%까지 사이즈도의 향상 이 있었다.

  • PDF