• Title/Summary/Keyword: ocr

Search Result 476, Processing Time 0.027 seconds

Strength characteristics of transversely isotropic rock materials

  • Yang, Xue-Qiang;Zhang, Li-Juan;Ji, Xiao-Ming
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.71-86
    • /
    • 2013
  • For rock materials, a transversely isotropic failure criterion established through the extended Lade-Duncan failure criterion incorporating an anisotropic state scalar parameter, which is a joint invariant of deviatoric microstructure fabric tensor and normalized deviatoric stress tensor, is verified with the results of triaxial compressive data on Tournemire shale. For torsional shear mode with $0{\leq}b{\leq}0.75$, rock shear strengths decrease with ${\alpha}$ increasing until the rock shear strength approaches minimum value at ${\alpha}{\approx}40^{\circ}$, and after this point, the rock shear strengths increase as ${\alpha}$ increases further. For the torsional shear mode with b > 0.75, rock shear strengths are almost constant for ${\alpha}{\leq}40^{\circ}$, but it increases with increase in ${\alpha}$ afterwards. The rock shear strength variation against ${\alpha}$ agrees with shear strength changing tendency of heavily OCR natural London Clays tested before. Prediction results show that the transversely isotropic failure criterion proposed in the paper is reasonable.

Fast Skew Detection of Document Image Using Morphological Operation (모폴로지 연산을 이용한 문서 이미지의 고속 기울기 검출 기법)

  • Shin Myoung-Jin;Kim Do-Hyun;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.796-799
    • /
    • 2006
  • This paper presents a new method for automatic detection of skew in a document image using mathematical morphology. To speed up processing, we use reduced image but it still requires long time to estimate the skew angle so the proposed method works with region of interest, not with whole image. Character strings are connected by using morphological closing operation and a component labeling is used to select region of interest. The method considers the lowermost pixels of characters in candidate regions in the binary image of original document image. Experimental results shows that the proposed method is extremely fast and robust as well as independent of script forms.

  • PDF

Recognition of Word-level Attributed in Machine-printed Document Images (인쇄 문서 영상의 단어 단위 속성 인식)

  • Gwak, Hui-Gyu;Kim, Su-Hyeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.412-421
    • /
    • 2001
  • 본 논문은 문서 영상에 존재하는 개별 단어들에 대한 속성정보 추출 방법을 제안한다. 단어 단위의 속성 인식은 단어 영상 매칭의 정확도 및 속도 개선, OCR 시스템에서 인식률 향상, 문서의 재생산 등 다양한 응용 가치를 찾을 수 있으며, 메타정보(meta-information) 추출을 통해 영상 검색(image retrieval)이나 요약(summary) 생성 등에 활용할 수 있다. 제안하는 시스템에서 고려하는 단어 영상의 속성은 언어의 종류(한글, 영문), 스타일(볼드, 이탤릭, 보통, 밑줄), 문자 크기(10, 12, 14 포인트), 문자 개수 (한글: 2, 3, 4, 5, 영문: 4, 5, 6, 7, 8, 9, 10), 서체(명조, 고딕)의 다섯 가지 정보이다. 속성 인식을 위한 특징은, 언어 종류 인식에 2개, 스타일 인식에 3개, 문자 크기와 개수는 각각 1개, 한글 서체 인식은 1개, 영문 서체 인식은 2개를 사용한다. 분류기는 신경망, 2차형 판별함수(QDF), 선형 판별함수(LDF)를 계층적으로 구성한다. 다섯 가지 속성이 조합된 26,400개의 단어 영상을 사용한 실험을 통해, 제안된 방법이 소수의 특징만으로도 우수한 속성 인식 성능을 보임을 입증하였다.

  • PDF

Separation of Text and Non-text in Document Layout Analysis using a Recursive Filter

  • Tran, Tuan-Anh;Na, In-Seop;Kim, Soo-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4072-4091
    • /
    • 2015
  • A separation of text and non-text elements plays an important role in document layout analysis. A number of approaches have been proposed but the quality of separation result is still limited due to the complex of the document layout. In this paper, we present an efficient method for the classification of text and non-text components in document image. It is the combination of whitespace analysis with multi-layer homogeneous regions which called recursive filter. Firstly, the input binary document is analyzed by connected components analysis and whitespace extraction. Secondly, a heuristic filter is applied to identify non-text components. After that, using statistical method, we implement the recursive filter on multi-layer homogeneous regions to identify all text and non-text elements of the binary image. Finally, all regions will be reshaped and remove noise to get the text document and non-text document. Experimental results on the ICDAR2009 page segmentation competition dataset and other datasets prove the effectiveness and superiority of proposed method.

Baseline Searching Method for Document Skew Detection (문서 영상의 기울기 검출을 위한 기준선 탐색 기법)

  • Shin, Myoung-Jin;Kim, Do-Hyeon;Cha, Eui-Young
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.218-225
    • /
    • 2007
  • This paper presents a technique to detect a document skew that often occurs during document scanning. To correct a skewed document is essential for automatic processing system including character segmentation, character recognition and so on. The proposed algorithm can detect a skew angle exactly by searching characters baselines that have slant information of the document within a candidated area. To reduce processing time, we resized the image small and then established a ROI (region of interest) by morphology operations and connected components analysis. We compared our method with the existing method based on morphology operations and proved correctness and efficiency of the proposed algorithm through experiments and analysis with various kind of document images.

  • PDF

Performance Improvement of Optical Character Recognition for Parts Book Using Pre-processing of Modified VGG Model (변형 VGG 모델의 전처리를 이용한 부품도면 문자 인식 성능 개선)

  • Shin, Hee-Ran;Lee, Sang-Hyeop;Park, Jang-Sik;Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.433-438
    • /
    • 2019
  • This paper proposes a method of improving deep learning based numbers and characters recognition performance on parts of drawing through image preprocessing. The proposed character recognition system consists of image preprocessing and 7 layer deep learning model. Mathematical morphological filtering is used as preprocessing to remove the lines and shapes which causes false recognition of numbers and characters on parts drawing. Further.. Further, the used deep learning model is a 7 layer deep learning model instead of VGG-16 model. As a result of the proposed OCR method, the recognition rate of characters is 92.57% and the precision is 92.82%.

Coreset Construction for Character Recognition of PCB Components Based on Deep Learning (딥러닝 기반의 PCB 부품 문자인식을 위한 코어 셋 구성)

  • Gang, Su Myung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.382-395
    • /
    • 2021
  • In this study, character recognition using deep learning is performed among the various defects in the PCB, the purpose of which is to check whether the printed characters are printed correctly on top of components, or the incorrect parts are attached. Generally, character recognition may be perceived as not a difficult problem when considering MNIST, but the printed letters on the PCB component data are difficult to collect, and have very high redundancy. So if a deep learning model is trained with original data without any preprocessing, it can lead to over fitting problems. Therefore, this study aims to reduce the redundancy to the smallest dataset that can represent large amounts of data collected in limited production sites, and to create datasets through data enhancement to train a flexible deep learning model can be used in various production sites. Moreover, ResNet model verifies to determine which combination of datasets is the most effective. This study discusses how to reduce and augment data that is constantly occurring in real PCB production lines, and discusses how to select coresets to learn and apply deep learning models in real sites.

Implementation of Recipe Recommendation System Using Ingredients Combination Analysis based on Recipe Data (레시피 데이터 기반의 식재료 궁합 분석을 이용한 레시피 추천 시스템 구현)

  • Min, Seonghee;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1114-1121
    • /
    • 2021
  • In this paper, we implement a recipe recommendation system using ingredient harmonization analysis based on recipe data. The proposed system receives an image of a food ingredient purchase receipt to recommend ingredients and recipes to the user. Moreover, it performs preprocessing of the receipt images and text extraction using the OCR algorithm. The proposed system can recommend recipes based on the combined data of ingredients. It collects recipe data to calculate the combination for each food ingredient and extracts the food ingredients of the collected recipe as training data. And then, it acquires vector data by learning with a natural language processing algorithm. Moreover, it can recommend recipes based on ingredients with high similarity. Also, the proposed system can recommend recipes using replaceable ingredients to improve the accuracy of the result through preprocessing and postprocessing. For our evaluation, we created a random input dataset to evaluate the proposed recipe recommendation system's performance and calculated the accuracy for each algorithm. As a result of performance evaluation, the accuracy of the Word2Vec algorithm was the highest.

Vehicle License Plate Text Recognition Algorithm Using Object Detection and Handwritten Hangul Recognition Algorithm (객체 검출과 한글 손글씨 인식 알고리즘을 이용한 차량 번호판 문자 추출 알고리즘)

  • Na, Min Won;Choi, Ha Na;Park, Yun Young
    • Journal of Information Technology Services
    • /
    • v.20 no.6
    • /
    • pp.97-105
    • /
    • 2021
  • Recently, with the development of IT technology, unmanned systems are being introduced in many industrial fields, and one of the most important factors for introducing unmanned systems in the automobile field is vehicle licence plate recognition(VLPR). The existing VLPR algorithms are configured to use image processing for a specific type of license plate to divide individual areas of a character within the plate to recognize each character. However, as the number of Korean vehicle license plates increases, the law is amended, there are old-fashioned license plates, new license plates, and different types of plates are used for each type of vehicle. Therefore, it is necessary to update the VLPR system every time, which incurs costs. In this paper, we use an object detection algorithm to detect character regardless of the format of the vehicle license plate, and apply a handwritten Hangul recognition(HHR) algorithm to enhance the recognition accuracy of a single Hangul character, which is called a Hangul unit. Since Hangul unit is recognized by combining initial consonant, medial vowel and final consonant, so it is possible to use other Hangul units in addition to the 40 Hangul units used for the Korean vehicle license plate.

An Enhanced Neural Network Approach for Numeral Recognition

  • Venugopal, Anita;Ali, Ashraf
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.61-66
    • /
    • 2022
  • Object classification is one of the main fields in neural networks and has attracted the interest of many researchers. Although there have been vast advancements in this area, still there are many challenges that are faced even in the current era due to its inefficiency in handling large data, linguistic and dimensional complexities. Powerful hardware and software approaches in Neural Networks such as Deep Neural Networks present efficient mechanisms and contribute a lot to the field of object recognition as well as to handle time series classification. Due to the high rate of accuracy in terms of prediction rate, a neural network is often preferred in applications that require identification, segmentation, and detection based on features. Neural networks self-learning ability has revolutionized computing power and has its application in numerous fields such as powering unmanned self-driving vehicles, speech recognition, etc. In this paper, the experiment is conducted to implement a neural approach to identify numbers in different formats without human intervention. Measures are taken to improve the efficiency of the machines to classify and identify numbers. Experimental results show the importance of having training sets to achieve better recognition accuracy.