• 제목/요약/키워드: ocr

검색결과 476건 처리시간 0.02초

한글 문자 인식에서의 오인식 문자 교정을 위한 단어 학습과 오류 형태에 관한 연구 (A Study on Word Learning and Error Type for Character Correction in Hangul Character Recognition)

  • 이병희;김태균
    • 한국정보처리학회논문지
    • /
    • 제3권5호
    • /
    • pp.1273-1280
    • /
    • 1996
  • 본 논문에서는 문자 인식 과정을 거치고 난 후에 발생하게 되는 오인식된 문자들 을 언어적 지식을 이용하여 교정하는 문자 인식 후처리에 관하여 논한다. 문자 인식의 오인식 교정시스템의 경우 후보 단어가 많을 때 많은 후보 단어중에서 가장 적당한 단어를 후보 단어로 올려주기 위해서는 여러 가지 정보가 필요하다. 본 논문에서는 이러한 정보로 이용할 수 있는 것으로 단어들의 특성과, 문자 인식에 발생하는 오인식 형태, 단어 학습에 관하여 논한다. 이를 위한 실험으로 15 만여의 단어가 수록된 국어 사전을 이비력하고 초중고 국어교과서에 나타난 단어 들의 사용빈도를 조사하여 국어 사전에 등록된 단어 중에서 10.7%정도가 실제 초중고 국어교과서에 사용되고 있다는 것을 알 수 있었다. 또한 실제 문자 인식 시스템들을 가지고 여러 문서를 입력하고 인식하여 오인식이 자주 일어나는 글자들 의 형태를 분류하여 보았다. 그리고 한국어 처리 관련 서적이나 논문을 처리하고자 한국어에 관련된 책의 찾아보기에 나타난 단어 를 학습시켜 후보 단어들의 다른 인하여 정확한 단어를 예측하기 힘들던 문제를 해결 하고자 하였다.

  • PDF

DTV 분산중계망 필드 테스트 결과 (Field Test Results Of A DTV Distributed Translator Network)

  • 왕수현;서영우;목하균;이재영;이용훈;김흥묵
    • 방송공학회논문지
    • /
    • 제13권4호
    • /
    • pp.463-478
    • /
    • 2008
  • 분산중계 방식은 기존 중계기를 이용하는 MFN(Multiple Frequency Network)과 OCR(On Channel Repeater)을 이용한 SFN(Single Frequency Network)에 비해 기존의 송출시설을 최대한 활용할 수 있고, 짧은 시간에 구축이 가능하여 비용이 효율적이며, 주파수 이용 효율을 높일 수 있는 방식이다. 본 필드 테스트는 이러한 분산중계 방식의 성능을 검증하고자 서울 서북부 지역을 중심으로 3세대, 5세대 그리고 6세대 수신기를 이용하여 총 30개 지점에 대하여 수신 전계강도와 노이즈마진 및 수신가능각을 측정하였고, 수신화질의 주관적 평가를 수행하였다. 필드 테스트를 수행한 결과 모든 조건의 수신기에서 수신 성능의 향상을 보였다. 각 수신기별 특성을 볼 때 3세대 수신기에 비해 5세대 수신기 및 6세대 수상기는 수신율의 향상뿐만 아니라 수신가능각도 증가되어 분산중계망의 가능성을 알 수 있었다.

한글 문자 데이터베이스 PHD08 구축 (Construction of Printed Hangul Character Database PHD08)

  • 함대성;이득용;정인숙;오일석
    • 한국콘텐츠학회논문지
    • /
    • 제8권11호
    • /
    • pp.33-40
    • /
    • 2008
  • 문자 인식의 응용이 형식 문서의 인식 같은 고전적인 영역을 벗어나 웹 문서나 자연 영상의 문자 인식으로 확장되고 있다. 이러한 새로운 응용에서는 명조나 고딕같은 표준 글꼴뿐만 아니라 다양한 모양의 글꼴을 사용하는 것이 보편적이다. 기존의 데이터베이스들은 주로 표준 글꼴을 대상으로 제작되어 새로운 응용에 사용하는데 한계를 안고 있다. 본 논문에서는 완성형 2350자 각각을 대상으로 9종류의 글꼴에 대해 글꼴 크기, 품질, 해상도를 달리하여 243개의 이미지 샘플을 생성하였다. 또한 이들 샘플 각각에 대해 이진 임계치와 회전 각도를 달리하여 변형된 샘플을 얻었다. 이러한 과정으로 각 글자마다 2,187개의 샘플을 생성하였으며, 총 5,139,450개의 샘플을 갖는 인쇄체 한글 데이터베이스를 구축하였다. 데이터베이스에 대한 특성과 상용 OCR 소프트웨어에 대한 인식 성능 등을 제시한다.

A Korean CAPTCHA Study: Defeating OCRs In a New CAPTCHA Context By Using Korean Syllables

  • Yang, Tae-Cheon;Ince, Ibrahim Furkan;Salman, Yucel Datu
    • International Journal of Contents
    • /
    • 제5권3호
    • /
    • pp.50-56
    • /
    • 2009
  • Internet is being used for several activities by a great range of users. These activities include communication, e-commerce, education, and entertainment. Users are required to register regarding website in order to enroll web activities. However, registration can be done by automated hacking software. That software make false enrollments which occupy the resources of the website by reducing the performance and efficiency of servers, even stop the entire web service. It is crucial for the websites to have a system which has the capability of differing human users and computer programs in reading images of text. Completely Automated Public Turing Test to Tell Computers and Human Apart (CAPTCHA) is such a defense system against Optical Character Recognition (OCR) software. OCR can be defined as software which work for defeating CAPTCHA images and make countless number of registrations on the websites. This study proposes a new CAPTCHA context that is Korean CAPTCHA by means of the method which is splitting CAPTCHA images into several parts with random rotation values, and drawing random lines on a grid background by using Korean characters only. Lines are in the same color with the CAPTCHA text and they provide a distortion of image with grid background. Experimental results show that Korean CAPTCHA is a more secure and effective CAPTCHA type for Korean users rather than current CAPTCHA types due to the structure of Korean letters and the algorithm we are using: rotation and splitting. In this paper, the algorithm of our method is introduced in detail.

Variations of AlexNet and GoogLeNet to Improve Korean Character Recognition Performance

  • Lee, Sang-Geol;Sung, Yunsick;Kim, Yeon-Gyu;Cha, Eui-Young
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.205-217
    • /
    • 2018
  • Deep learning using convolutional neural networks (CNNs) is being studied in various fields of image recognition and these studies show excellent performance. In this paper, we compare the performance of CNN architectures, KCR-AlexNet and KCR-GoogLeNet. The experimental data used in this paper is obtained from PHD08, a large-scale Korean character database. It has 2,187 samples of each Korean character with 2,350 Korean character classes for a total of 5,139,450 data samples. In the training results, KCR-AlexNet showed an accuracy of over 98% for the top-1 test and KCR-GoogLeNet showed an accuracy of over 99% for the top-1 test after the final training iteration. We made an additional Korean character dataset with fonts that were not in PHD08 to compare the classification success rate with commercial optical character recognition (OCR) programs and ensure the objectivity of the experiment. While the commercial OCR programs showed 66.95% to 83.16% classification success rates, KCR-AlexNet and KCR-GoogLeNet showed average classification success rates of 90.12% and 89.14%, respectively, which are higher than the commercial OCR programs' rates. Considering the time factor, KCR-AlexNet was faster than KCR-GoogLeNet when they were trained using PHD08; otherwise, KCR-GoogLeNet had a faster classification speed.

스마트폰 카메라 기반 아동 교육용 산수 블록 인식 애플리케이션 개발 (Development of a Blocks Recognition Application for Children's Education using a Smartphone Camera)

  • 박상아;오지원;홍인식;남윤영
    • 인터넷정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.29-38
    • /
    • 2019
  • 현재 정보사회는 빠르게 격변하며 다양한 분야에서 혁신과 창의성을 요구하고 있으며 논리적 사고의 근간이 될 수 있는 수학의 중요성이 강조되고 있다. 본 논문의 목적은 아동들에게 수학 학습에 대한 동기와 흥미를 유발하기 위해 아동들이 손쉽게 사용할 수 있는 교구를 이용하여 수학영역의 논리적인 사고가 더욱 확장되고 자발적 학습이 일어날 수 있는 수학교육 애플리케이션을 개발하는 것이다. 본 논문에서는 스마트 기기와 블록을 이용하여 수학 교육 애플리케이션을 설계하고 구현하였다. 애플리케이션의 주 기능은 카메라를 이용한 촬영과 수식 계산 값 확인이다. 아동이 산수 교육용 블록을 이용해 수식을 만든 뒤 카메라를 이용하여 블록을 촬영하면 자신이 만든 수식의 계산 값을 직접 확인할 수 있다. 촬영한 이미지의 전 처리 과정과 텍스트 추출, 문자인식은 OpenCV 라이브러리와 Tesseract-OCR 라이브러리로 구현하였다.

옛한글 문서의 전자문서화와 정보공유 방법 제안 (Digitization of Old Korean Texts with Obsolete Korean Characters and Suggestion for Improvement of Information Sharing)

  • 김하영;유우식
    • 보존과학회지
    • /
    • 제37권3호
    • /
    • pp.255-269
    • /
    • 2021
  • 옛한글로 저술된 자료는 활자 인쇄본, 목판 인쇄본, 필사본, 고소설, 서간 등 방대한 자료가 한국학중앙연구원 장서각을 비롯하여 많은 기관에 소장되어 있다. 옛한글을 전산정보화하기 위해서는 수작업에 의한 '입력'과정이 필요하다. 옛한글 문서의 전자문서화 작업이 오랫동안 진행되어 왔으나 옛한글을 전공한 연구자 개인의 노력으로 옛한글을 읽고 입력하여 전자자료화되고 있는 실정이다. 연구자의 숙련도가 개인적인 작업능력의 향상에 머무르고 기술의 축적으로 이어지지 못한다. 현재까지 극히 일부분의 옛한글 문서만이 소개되고 대부분의 자료는 수장고에 보관되어 있는 상태이다. 어렵게 전자문서화된 옛한글 고문서도 전자기기 간의 호환성 문제로 정보 공유 및 표시에도 어려움이 있다. 옛한글 문서의 전자문서화의 작업효율을 높이고 전자문서화 기술의 축적을 위해서는 옛한글의 입력, 표시, 저장 방법의 개선을 비롯하여 옛한글 문서의 이미지 분석을 통한 광학적 문자인식(OCR)의 개발이 필요하다.

딥러닝을 활용한 전략물자 판정 지원도구 개발에 대한 연구 (A Study on the Development of a Tool to Support Classification of Strategic Items Using Deep Learning)

  • 조재영;윤지원
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.967-973
    • /
    • 2020
  • 전략물자관리 제도의 이행 확산에 따라 전략물자 판정의 중요성이 높아지고 있으나 전략물자 제도를 처음 접하는 수출기업은 전략물자의 개념을 이해하기 쉽지 않고, 전략물자를 통제하는 기준이 다양하여 전략물자 판정에 어려움이 따른다. 본 논문에서는 전략물자 제도를 처음 접하는 기업이나 전략물자 판정시스템 이용자에게 진입장벽을 낮추어 판정이라는 과정을 쉽게 접근할 수 있는 방법을 제안한다. 이용자가 전략물자 판정이라는 절차를 매뉴얼이나 카탈로그의 제공만으로 판정결과를 확인할 수 있게 된다면, 전략물자 판정 방법과 절차에 보다 편리하고 쉽게 다가설 수 있을 것이다. 본 연구 목적을 달성하기 위해 이미지 인식 및 분류에서 연구되고 있는 딥러닝과 OCR(광학문자판독) 기술을 활용하고, 전략물자 판정 지원도구에 대한 개발과 연구를 통하여 우리 기업의 전략물자 판정에 도움이 되는 정보를 제공한다.

지능형 OCR 시스템을 위한 한글 필기체 생성 및 분류 모델에 관한 연구 (A Study on Hangul Handwriting Generation and Classification Mode for Intelligent OCR System)

  • 백진성;서지윤;정상중;정도운
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.222-227
    • /
    • 2022
  • 본 논문에서는 다양한 산업분야에 적용 가능한 딥러닝 알고리즘 기반의 한글 필기체 생성 및 분류 모델을 구현하였다. 구현된 GAN 기반의 한글 필기체 생성 모델과 CNN 기반의 한글 필기체 분류 모델 2가지로 구성되어 있다. GAN 모델은 가짜 한글 필기체 데이터를 생성하기 위한 생성자 모델과 가짜 필기체 데이터를 판별하기 위한 판별자 모델로 구성된다. CNN 모델의 경우 'PHD08' 데이터세트를 활용하여 모델의 학습을 수행하였으며, 학습 결과 92.45% 정확도로 한글 필기체를 분류하는 것을 확인하였다. 구현된 GAN 모델을 통해 생성된 한글 필기체 데이터를 기존 CNN 모델의 학습 데이터세트와 통합하여 분류 모델의 성능평가를 진행한 결과 96.86%로 기존 분류 성능보다 우수하게 나타남을 확인하였다.

북스캔을 이용한 도서 손상 단계에 따른 딥 러닝 기반 도서 복구 방법에 관한 연구 (A Study on Book Recovery Method Depending on Book Damage Levels Using Book Scan)

  • 석경호;이주희;박병찬;김석윤;김영모
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.154-160
    • /
    • 2023
  • Recently, with the activation of eBook services, books are being published simultaneously as physical books and digitized eBooks. Paper books are more expensive than e-books due to printing and distribution costs, so demand for relatively inexpensive e-books is increasing. There are cases where previously published physical books cannot be digitized due to the circumstances of the publisher or author, so there is a movement among individual users to digitize books that have been published for a long time. However, existing research has only studied the advancement of the pre-processing process that can improve text recognition before applying OCR technology, and there are limitations to digitization depending on the condition of the book. Therefore, support for book digitization services depending on the condition of the physical book is needed. need. In this paper, we propose a method to support digitalization services according to the status of physical books held by book owners. Create images by scanning books and extract text information from the images through OCR. We propose a method to recover text that cannot be extracted depending on the state of the book using BERT, a natural language processing deep learning model. As a result, it was confirmed that the recovery method using BERT is superior when compared to RNN, which is widely used in recommendation technology.

  • PDF