광학 문자 인식(Optical Character Recognition, OCR)은 이미지 내의 문자를 인식하여 디지털 포맷(Digital Format)의 텍스트로 변환하는 기술이다. 딥러닝(Deep Learning) 기반의 OCR이 높은 인식률을 보여줌에 따라 대량의 기록 자료를 보유한 많은 산업 분야에서 OCR을 활용하고 있다. 특히, 의료 산업 분야는 의료 서비스 향상을 위해 딥러닝 기반의 OCR을 적극 도입하였다. 본 논문에서는 딥러닝 기반 OCR 엔진(Engine) 및 의료 데이터에 특화된 OCR의 동향을 살펴보고, 의료 OCR의 발전 방향에 대해 제시한다. 현재의 의료 OCR은 검출한 문자 데이터를 자연어 처리(Natural Language Processing, NLP)하여 인식률을 개선하였다. 그러나, 정형화되지 않은 손글씨(Handwriting)나 변형된 문자에서는 여전히 인식 정확도에 한계를 보였다. 의료 데이터의 데이터베이스(Database)화, 이미지 전처리(Pre-processing), 특화된 자연어 처리를 통해 더욱 고도화된 의료 OCR을 발전시키는 것이 필요하다.
다음은 본 논문에서는 딥러닝을 통한 한글 OCR 정확도 향상을 제안한다. OCR은 인쇄되거나 손으로 쓴 문자를 광학적 방법으로 감지 인식하여 디지털로 인코딩하는 프로그램이다. 현재 가장 많이 쓰이는 tesseract OCR의 경우, 영문 인식의 정확도가 높다. 하지만 한글은 복잡한 구조에 비해 학습 데이터가 적어 정확도가 떨어진다. 따라서 이 연구에서는 이미지 프로세싱을 통해 원하는 이미지에서 글자 영역을 추출하고, 이를 학습 데이터로 활용한 딥러닝으로 한글 OCR의 정확도를 향상시키는 방법을 제안한다. 기존 영문과 숫자 및 몇 가지 언어에만 국한되어 발전해왔던 OCR을 다양한 언어에도 응용할 수 있을 것으로 기대된다.
본 연구에서는 국내 연약점토지반을 대상으로 현장에서 불교란 상태로 채취된 흙을 이용해 실내 물리실험 및 역학시험을 실시하여 OCR을 산정하였으며, 실험 결과를 이용해 기존의 경험식과 심도별로 OCR을 예측하였다. 액성지수와 NAVFAC의 경험식을 실제 측정값과 비교·검토한 결과 액성지수를 이용한 방법이 지반의 개략적인 OCR을 추정하기에 적절한 것으로 나타났으나 지하수위 상부 지반의 경우에는 건조로 인한 영향을 고려하지 못한 것으로 나타났다. 따라서 지하수위 상부지반을 포함한 각 지역별 심도-OCR간의 상관관계식을 제안하였으며, 제안된 식을 인접지역의 OCR 예측에 적용한 결과 점토(CL, CH)로 구성된 지역에서의 예측값은 실측값과 상당부분 일치하는 경향을 보였다. 그러나 실트(ML)로 구성된 지역에서는 예측값이 실제값과 불일치한 결과를 보여 흙의 공학적 특성보다는 퇴적 및 구성 특성이 OCR예측에 중요한 영향인자임을 확인할 수 있었다.
As the 4th Industrial Revolution emerged as a key to improving national competitiveness, OCR technology, one of the major technologies in the 4th industry is in the spotlight. Since characters in various images contain a lot of information, OCR technology for recognizing these characters has evolved into technology used in many industries. In this paper, trends in OCR technology were identified and predicted using thesis data published in 'RISS' and patent data by International patent classification (IPC) under the theme of Optical character recognition (OCR). For patent data 20,000 patents related to OCR technology from 2002 to 2020 were used as data, and 432 papers from 2012 to 2022 were used as data. Through time-series analysis, each patent data and thesis data were investigated since when OCR technology has developed, and various keyword analysis predicted which technology will be used in the future. Finally, the direction of future OCR technology development was presented through network association analysis with patent data and thesis data.
제안하는 서비스는 OCR(Optical Character Recognition, 광학문자인식)과 딥러닝 패턴분석 알고리즘을 활용하여 문서를 효율적으로 관리하는 서비스로 필기를 많이 하는 사용자를 위한 기능을 제공한다. 최근 다양한 분야에서의 머신러닝 기반의 OCR의 활용이 증가했지만 기존의 애플리케이션은 패턴 분석 알고리즘과 통계 기반의 OCR을 혼합하여 사용하기 때문에 필기체에 대한 인식률이 높지 않다. 이에 본 논문에서는 OCR과 패턴분석 알고리즘을 활용하여 필기체에 대한 높은 인식률을 제공하는 서비스를 제안한다.
AI-OCR은 광학 문자 인식(OCR) 기술과 Artificial intelligence(AI)의 결합으로 사람의 인식이 필요하던 OCR의 단점을 보완하는 기술 향상을 이뤄내고 있다. AI-OCR의 성능을 높이기 위해서는 다양한 학습데이터의 훈련이 필요하다. 하지만 이미지 색상이 비슷한 밝기를 가진 경우에는 인식률이 떨어지기 때문에, Homomorphic filtering(HF)을 이용한 전처리 과정으로 색상 차이를 분명하게 하여 텍스트 인식률을 높이게 된다. HF은 감마값을 이용해 이미지의 고주파와 저주파를 각각 조절한다는 점에서 텍스트 추출에 적합하지만 감마값의 조절이 수동적으로 이뤄지는 단점이 존재한다. 본 연구는 시험적 과정을 거쳐 이미지의 대비, 밝기 및 엔트로피를 근거하는 감마의 임계값 범위를 제안한다. 제안된 감마값 범위를 적용한 HF의 실험 결과는 효율적인 AI-OCR의 높은 등장 가능성을 시사한다.
기존의 OCR 엔진은 보정된 환경에서 읽혀진 서류 영상에 맞게 설계되어있다. 스마트 폰을 비롯한 검정 화면 거리가 보정되지 않은 기기에서 읽혀진 영상에서는 삼차원 원근 투시에 의한 찌그러짐 또는 곡면상에서의 찌그러짐 등이 핵심적인 문제점들로 여겨진다. 휴대용 단말기에서 읽혀진 영상들에서의 OCR 기능에 대한 요구가 증가일로에 있는 시점에서, 본 논문에서는 문제점들을 세 가지로 구분하고 - 회전에 무관한 문자 영역 추출, 폰트 등의 크기에 무관한 문자 선 영역 추출, 3차원 매핑 이론 - 이를 해결하기위한 방법을 제시하였다. 이러한 방법론을 통합하여 카메라 영상 위에서의 OCR을 개발하였다.
OCR(광학문자인식)은 컴퓨터 분야에 적용된 지 20년의 역사가 되었고, 자동차 번호판 인식을 통한 주차관리 등 여러 분야에서 응용되어왔다. 본 OCR 기반 스마트 가계부 앱 개발연구에서도 이 기술을 이용하였다. 스마트폰 기반 가계부에서 구매 내역을 수기로 일일이 기입하는 불편을 개선하고자 카메라로 영수증을 촬영해서 구입 목록을 자동으로 정리할 수 있도록 하였다. 이 과정에서 기존의 OCR 기술만으로 영수증의 이미지 문자를 판독하면 인식률이 떨어져서 영상처리기술을 이용하여 영수증 사진의 대비를 조절하는 방법으로 영수증의 문자 인식률을 89%에서 92.5%로 향상하였다.
Despite the successful launch of Advanced Television Systems Committee (ATSC) 3.0 broadcasting worldwide, broadcasters are facing obstacles in constructing void-less large-scale single-frequency networks (SFNs). The bottleneck is the absence of decent on-channel repeater (OCR) solutions necessary for SFNs. In the real world, OCRs suffer from the maleficent feedback interference (FI) problem, which overwhelms the desired input signal. Moreover, the undesired multipaths between studio-linked transmitters and the OCR deteriorate the forward signals' quality as well. These problems crucially restrict the feasibility of conventional OCR systems, arousing the strong need for cost-worthy advanced OCR solutions. This paper presents an ATSC 3.0-specific solution of advanced OCR that solves the FI problem and refines the input signal. To this end, the FI canceler and channel equalizer functionalities are carefully implemented into the OCR system. The presented OCR system is designed to be fully compliant with the ATSC 3.0 specifications and performs a fast and efficient signal processing by exploiting the specific frame structure. The real product of ATSC 3.0 OCR is fabricated as well, and its feasibility is verified via field and laboratory experiments. The implemented solution is installed at a commercial on-air site and shown to provide substantial coverage gain in practice.
본 논문에서는 스마트폰으로 음식 메뉴를 촬영한 영상으로부터 글자를 인식하는 안드로이드 기반의 한글 음식 메뉴 인식 어플리케이션을 설계하고 구현한다. Optical Character Recognition (OCR) 기술은 크게 전처리, 인식 그리고 후처리 과정으로 구분된다. 전처리 과정에서는 Maximally Stable Extremal Regions (MSER) 기법을 이용하여 글자를 추출한다. 인식 과정에서는 무료 OCR 엔진인 Tesseract-OCR을 이용하여 글자를 인식한다. 후처리 과정에서는 음식 메뉴에 대한 사전 DB를 이용하여 잘못된 결과를 수정한다. 제안하는 기법의 성능을 평가하기 위해 실제 메뉴판을 DB로 이용하여 인식 성능을 비교 측정하는 실험을 진행하였다. 구글 플레이스토어에 있는 글자 인식 어플리케이션인 OCR Instantly Free, Text Scanner 그리고 Text Fairy와 인식률 측정 실험을 진행하였으며 실험 결과 제안하는 기법이 다른 기법보다 평균적으로 14.1% 높은 인식률을 보여주는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.