• 제목/요약/키워드: ocean tomography

검색결과 44건 처리시간 0.018초

3-D Crustal Velocity Tomography in the Central Korean Peninsula (한반도 중부지역의 3차원 속도 모델 토모그래피 연구)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • 제31권3호
    • /
    • pp.235-247
    • /
    • 1998
  • A new technique of simultaneons inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the center of the Korean Peninsula including Pyongnam Basin, Kyonggi Massif, Okchon Fold Zone, Taebaeksan Fold Zone, Ryongnam Massif and Kyongsang Basin. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 32 events with 404 seismic rays are inverted for locations and crustal structure. 5 ($1^{\circ}$ along the latitude)${\times}6$ ($0.5^{\circ}$ along the longitude) ${\times}8$ block (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from the surface to the Moho, eight profiles along latitude and longitude and the Moho depth distribution was determined. The results are as follows: (1) the average velocity and thickness of sediment are 5.15 km/sec and 3-4 km, and the velocity of basement is 6.12 km/sec. (2) the velocities fluctuate strongly in the upper crust, and the velocity distribution of the lower crust under Conrad appears basically horizontal. (3) the average depth of Moho is 29.8 km and velocity is 7.97 km/sec. (4) from the sedimentary depth and velocity, basement thickness and velocity, form of the upper crust, the Moho depth and form of the remarkable crustal velocity differences among Pyongnam Basin, Kyonggi Massif, Okchon Zone, Ryongnam Massif and Kyongsang Basin can be found. (5) The different crustal features of ocean and continent crust are obvious. (6) Some deep index of the Chugaryong Rift Zone can be located from the cross section profiles. (7) We note that there are big anisotropy bodies near north of Seoul and Hongsung in the upper crust, implying that they may be related to the Chugaryong Rift Zone and deep fault systems.

  • PDF

Analysis of Differences between the Sonic Layer Depth and the Mixed Layer Depth in the East Sea (동해의 음향층심도와 혼합층깊이 차이 분석)

  • Lim, Sehan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제19권5호
    • /
    • pp.1259-1268
    • /
    • 2015
  • The sonic layer depth (SLD) variability is important for understanding the acoustic properties of the upper ocean that influence acoustic communications, acoustic tomography, and naval operations related to searching and detecting marine underwater vessels. Generally, the SLD is the acoustical equivalent of the mixed layer depth (MLD), although they are defined differently. In this study the SLD was compared with the MLD over the annual cycle in the East Sea using an available set of temperature-salinity observation profiles. For the comparison, various definitions and methods of the MLD had applied. As a result, the SLD in the East Sea is slight similar to the curvature method applied MLD, but the other MLD have severe differences with the SLD. Futhermore, a parabolic equation transmission model is used to evaluate the cutoff frequency trapped in surface duct. It follow that there is an optimum frequency for propagation at which the loss of sound is minimum.

Image Compression by Linear and Nonlinear Transformation of Computed Tomography (전산화단층촬영의 선형과 비선형변환에 의한 영상압축)

  • Park, Jae-Hong;Yoo, Ju-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • 제13권4호
    • /
    • pp.509-516
    • /
    • 2019
  • In the linear transformation method, the original image is divided into a plurality of range blocks, and a partial transform system for finding an optimal domain block existing in the image for each range block is used to adjust the performance of the compression ratio and the picture quality, The nonlinear transformation method uses only the rotation transformation among eight shuffle transforms. Since the search is performed only in the limited domain block, the coding time is faster than the linear transformation method of searching the domain block for any block in the image, Since the optimal domain block for the range block can not be selected in the image, the performance may be lower than other methods. Therefore, the nonlinear transformation method improves the performance by increasing the approximation degree of the brightness coefficient conversion instead of selecting the optimal domain block, The smaller the size of the block, the higher the PSNR value, The higher the compression ratio is increased groups were quadtree block divided to encode the image at best.

Seismic Velocity Structure Along the KCRT-2008 Profile using Traveltime Inversion of First Arrivals (초동주시 역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조)

  • Kim, Ki-Young;Lee, Jung-Mo;Baag, Chang-Eob;Jung, Hee-Ok;Hong, Myung-Ho;Kim, Jun-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • 제13권2호
    • /
    • pp.153-158
    • /
    • 2010
  • To investigate the velocity structure in the central and southern parts of the Korean peninsula, a 299-km NW-SE seismic refraction profile KCRT-2008was obtained across major tectonic boundaries. Seismic waves were generated by detonating 250 ~ 1500 kg explosives at depths of 50 ~ 100 m in eight drill holes located at intervals of 21 ~ 113 km. The seismic signals were detected by 4.5 Hz geophones at a nominal interval of 500 m. The first-arrival times were inverted to derive a velocity tomogram. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2 ~ 3, 11 ~ 13, and 20 km. The Moho discontinuity with refraction velocity of 7.7 to 8.1 km/s has a maximum depth of 34.5 km under the central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 31.3 km to 34.4 km. The velocity tomogram shows the existence of a 129 km wide low-velocity zone centered at 7.2 km depth under the Okchon fold belt and Gyeonggi massif and low-velocity(< 5.4 km/s) rocks in the Gyeongsang sedimentary basin with a maximum thickness of 2.6 km