• 제목/요약/키워드: ocean acidification

검색결과 45건 처리시간 0.031초

Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments

  • Hyun, Bonggil;Choi, Keun-Hyung;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Moon, Chang-Ho;Shin, Kyoungsoon
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1003-1012
    • /
    • 2014
  • We examined the combined impacts of future increases of $CO_2$ and temperature on the growth of four marine diatoms (Skeletonema costatum, Chaetoceros debilis, Chaetoceros didymus, Thalassiosira nordenskioeldii). The four strains were incubated under four different conditions: present ($pCO_2$: 400ppm, temperature: $20^{\circ}C$), acidification ($pCO_2$: 1000ppm, temperature: $20^{\circ}C$), global warming ($pCO_2$: 400ppm, temperature: $25^{\circ}C$), and greenhouse ($pCO_2$: 1000ppm, temperature: $25^{\circ}C$) conditions. Under the condition of higher temperatures, growth of S. costatum was suppressed, while C. debilis showed enhanced growth. Both C. didymus and T. nodenskioldii showed similar growth rates under current and elevated temperature. None of the four species appeared affected in their cell growth by elevated $CO_2$ concentrations. Chetoceros spp. showed increase of pH per unit fluorescence under elevated $CO_2$ concentrations, but no difference in pH from that under current conditions was observed for either S. costatum or T. nodenskioeldii, implying that Chetoceros spp. can take up more $CO_2$ per cell than the other two diatoms. Our results of cell growth and pH change per unit fluorescence suggest that both C. debilis and C. didymus are better adapted to future oceanic conditions of rising water temperature and $CO_2$ than are S. costatum and T. nodenskioeldii.

기후변화가 남해 해양생태계에 미치는 영향평가 (Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea)

  • 주세종;김세주
    • Ocean and Polar Research
    • /
    • 제34권2호
    • /
    • pp.197-199
    • /
    • 2012
  • According to the IPCC climate change scenario (A1B scenario), the surface seawater temperature of the South Sea of Korea by 2100 may be $2-3.5^{\circ}C$ higher than at present, and seawater pH may decrease from 8.1 to 7.8, due to the increase in atmospheric $CO_2$, which is predicted to increase in concentration from 380 to 750 ppm. These changes may not only intensify the strength of typhoons/storm surges but also affect the function and structure the marine ecosystem. In order to assess the impact of climate change on the marine ecosystem in Korean waters, the project named the 'Assessment of the impact of climate change on marine ecosystem in the South Sea of Korea' has been supported by the Ministry of Land, Transport and Maritime Affairs, from 2008. The goal of this project is to enhance our ability to adapt and prepare for the future environmental changes through the reliable predictions based on the knowledge obtained from projects like this. In this respect, this project is being conducted to investigate the effects of climate/marine environment changes (ocean warming and acidification), and to predict future changes of the structure and function of the ecosystem in the South Sea of Korea. This special issue contains 6 research articles, which are the highlights of the studies carried out through this project.

사육수의 pH변화가 복해마(Hippocampus kuda)에 미치는 생리적 영향 (The Physiological Responses of Spotted Seahorse Hippocampus kuda to Low-pH Water)

  • 박천만;김기혁;문혜나;여인규
    • 생명과학회지
    • /
    • 제27권7호
    • /
    • pp.826-833
    • /
    • 2017
  • 대기의 이산화탄소의 농도 증가는 해양산성화와 지구온난화를 유발하는 것으로 알려져 있다. 해마는 해양생태계 및 수산자원생물로서 중요한 종으로 알려져 있지만, 최근 해양산성화로 인하여 개체수가 감소되고 있는 실정이다. 따라서 본 연구에서는 멸종 위기 종인 복해마(Hippocampus kuda)에 미치는 생리적 영향을 조사하기 위해서 사육수의 산성조건인 pH 6.0, 6.5, 7.0 및 자연해수(pH 8.0)의 환경에서 복해마(H. kuda)를 15일 동안 사육 후 체내 조성 변화 및 항산화 효소 활성 변화에 대하여 조사를 실시하였다. 복해마(H. kuda)의 크기 및 성장은 대조군인 pH 8.0을 제외한 실험군에서는 pH가 저하함에 따라 감소하는 경향을 나타내었다. 체내 조성성분인 회분, 조지방 및 조단백 또한 pH 저하에 따라 농도의존적으로 감소하는 것이 관찰되었다. SOD, CAT 및 GSH와 같은 항산화 효소의 분석 결과, SOD활성의 경우, pH 저하에 따라 농도의존적으로 감소하지만, 이와 상반되게 CAT 및 GSH에서는 pH저하에 따라 활성이 농도의존적으로 증가하는 결과가 나타내었다. 이것은 복해마(H. kuda)가 사육수의 pH 저하에 따른 체내 항상성을 유지하는 과정 중 스트레스가 야기되어 에너지 대사가 손상된 것으로 추정된다. 항산화효소는 일반적으로 산성화 스트레스에 민감하게 작용하는데 본 연구에서도 사육수의 pH 변화에 따라 항산화 효소작용이 유의하게 변화하였다. 이러한 결과로 복해마(H. kuda)에 있어서 산성화 노출을 통한 생리학적 스트레스가 항산화 반응 및 체내 성분과 성장을 저해하는 것으로 여겨진다.

Effect of elevated pCO2 on thermal performance of Chattonella marina and Chattonella ovata (Raphidophyceae)

  • Lim, Myeong Hwan;Lee, Chung Hyeon;Min, Juhee;Lee, Hyun-Gwan;Kim, Kwang Young
    • ALGAE
    • /
    • 제35권4호
    • /
    • pp.375-388
    • /
    • 2020
  • Ocean acidification and warming, identified as environmental concerns likely to be affected by climate change, are crucial determinants of algal growth. The ichthyotoxic raphidophytes Chattonella species are responsible for huge economic losses and environmental impact worldwide. In this study, we investigated the impact of CO2 on the thermal performance curves (TPCs) of Chattonella marina and Chattonella ovata grown under temperatures ranging from 13 to 34℃ under ambient pCO2 (350 μatm) and elevated pCO2 (950 μatm). TPCs were comparable between the species or even between pCO2 levels. With the exception of the critical thermal minimum (CTmin) for C. ovata, CTmin for C. marina and the thermal optimum (Topt) and critical thermal maximum (CTmax) for both species did not change with elevation of pCO2 levels. While CO2 enrichment increased the maximum photosynthetic rates (Pmax) up to 125% at the Totp of 30℃, specific growth rates were not significantly different under elevated pCO2 for the two species. Overall, C. ovata is likely to benefit from climate change, potentially widening its range of thermal tolerance limit in highly acidic waters and contributing to prolonged phenology of future phytoplankton assemblages in coastal waters.

Effects of Al and Cd on Vitellogenin mRNA Induction by Estradiol-17$\beta$ in the Primary Culture of Hepatocytes in the Rainbow Trout, Oncorhynchs mykiss

  • Hwang, Un-Gi;Park, Kie-Young;Kang, Ju-Chan;Pyung Chin
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.185-186
    • /
    • 2001
  • Recently, industrial activities have increased atmospheric concentration of sulfur and nitrogen oxides, resulting in acidification in the environments. In addition, acidification accelerates the mobilization of metals that are toxic to fish and increases their concentrations in the aquatic environment. Increased metals may interfere with reproductive physiology in fish. Al and Cd are such metals that impaired the preduction of Vitellogenin (VTG), a egg yolk precursor proteins. (omitted)

  • PDF

해양산성화가 넙치의 초기발달에 미치는 영향: 현장 메조코즘(mesocosm) 실험 (The Effect of Ocean Acidification on Early Growth of Juvenile Oliver Flounder (Paralichthys olivaceus): in situ Mesocosm Experiment)

  • 심정희;권정노;박주면;곽석남
    • 환경생물
    • /
    • 제31권4호
    • /
    • pp.353-361
    • /
    • 2013
  • 해양에서 이산화탄소 증가에 따른 해양산성화가 넙치치어의 성장에 미치는 영향을 조사하기 위하여 현장 메조코즘 실험을 실시하였다. 동해 남부에 위치한 기장군 장안읍의 사질저질에서 실험군(이산화탄소 주입)과 대조군의 실험장비를 설치하여 43일 동안 총 447개체 (실험군 223개체, 대조군 224개체)를 대상으로 실시하였다. 실험군의 pH는 평균 $7.63{\pm}0.13$, 이산화탄소 ($fCO_2$)농도는 평균 $1660{\pm}540$ ${\mu}atm$로 2100년도에 예상되는 수준으로(IPCC 2007) 유지하였으며, 대조구는 현재 기장군 장안읍 해역의 해양환경으로 유지하였다. 실험기간동안 사망률은 실험군과 대조군 사이에서 큰 차이를 나타내지 않았고 시간이 지남에 따라 감소하는 경향을 나타내었다. 넙치치어의 체장과 체중은 대조군에서 더 큰 증가양상을 나타내어, 그 결과 대조군에서 더 큰 성장률(specific growth rate)을 보였다. 결론적으로 본 연구는 해양에서 이산화탄소 농도의 증가는 넙치 치어의 초기 성장에 영향을 줄 수 있는 가능성을 제시하였다.

미국 해양기반기후해법 법안(Ocean Based Climate Solution Act, OBCSA)의 검토와 국내 해양기후변화 법제에 대한 시사점 (A Review of a Bill on the Ocean-Based Climate Solution Act (OBCSA) in the U.S and Implications for the Ocean Climate Change-Related Legal System in Korea)

  • 윤소라;이문숙
    • Ocean and Polar Research
    • /
    • 제45권2호
    • /
    • pp.71-87
    • /
    • 2023
  • Climate change causes ocean warming, ocean acidification, sea-level rise, dynamic coastal risk, change of ecosystem structure and function, and degradation of ecosystem services. Not only that, but it has negatively impacted the well-being of people, society, and culture, including food security, water resources, water quality, livelihood, health, welfare, infrastructure, transport, tourism, recreation, and so on, especially by particularly degrading indigenous communities and generating an inequitable distribution of benefits and costs. As pointed out here, these adverse impacts of climate change on the ocean have been emphasized at the international and national levels. In contrast, the ocean field has been neglected in the climate change conversation for too long. However, since the UNFCCC COP 25, the ocean has been drawn into the discussion as a solution to address climate change. Moreover, the U.S. Congress recently unveiled a bill called the 'Ocean-Based Climate Solution Act, OBCSA' that reflects the new paradigm of the international regime. The comprehensive legislative bill includes elements related to climate inequity, a blue economy, and a community-led bottom-up policy mechanism, which will have a significant bearing on the ocean-climate legal system. Therefore, this study reviews the OBCSA and deduces implications with regard to the ocean-climate legal system in Korea.

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae;Hur, Young Baek;Cho, Kee Chae;Jeon, Chang Young;Lee, Deok Chan
    • 한국패류학회지
    • /
    • 제28권3호
    • /
    • pp.277-291
    • /
    • 2012
  • Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

기후변화가 대형선망 고등어 어업의 최적탄소배출량에 미치는 영향분석 (A Study on the Optimal Emission of CO2 due to Climate Change : An Application for Large Purse Seine)

  • 최종두
    • Ocean and Polar Research
    • /
    • 제39권3호
    • /
    • pp.195-203
    • /
    • 2017
  • The purpose of this paper is to estimate the optimal $CO_2$ emission in the maximum economic yield (MEY), maximum sustainable yield (MSY), and open access (OA) using a bioeconomic model. The results are as follows; in the case of $E_{MEY}$, $E_{MSY}$, and $E_{OA}$ levels, $CO_2$ emissions are estimated at $150,704,746CO_2/kg$, $352,211,193CO_2/kg$, and $301,409,492CO_2/kg$ respectively. We show that the $E_{MEY}$ is more efficient than the other levels. That is, the level of $E_{MEY}$ signifies the optimal economic fishing usage as the most economically efficient usage for large purse seine fishery catching mackerel species. The emission of $CO_2$ in $E_{MEY}$ is the lowest level. Also, the impacts of climate changes such as ocean temperature increase, ocean acidification, and the combined impact thereof show that the biomass of mackerel decreases.

Behavior Analysis of Discharged DIC Concentrated Seawater through Towed Pipe Injection from Ship

  • Kwon, Seong-Min;Kim, Kang-Min;Song, Hyeon-Woo;Lee, Joong-Woo
    • 한국항해항만학회지
    • /
    • 제43권2호
    • /
    • pp.79-85
    • /
    • 2019
  • Climate change is a very vital issue that can be no longer avoided. Korea has been a top-level country Iin dealing with carbon dioxide emissions since 1960. Many studies have been conducted to suppress or eliminate carbon dioxide emissions, which account for a large portion of greenhouse gases. Carbon Capture and Storage (CCS), the most practical method of them, plays a significant role. However, these methods have the disadvantage of the limits of geographical distribution and high possibility of re-emission into the atmosphere. Recently, ocean storage has been studied using Accelerated Weathering of Limestone (AWL), a technique for storing carbon dioxide in the ocean as an alternative to CCS, an underground storage. AWL is a method of converting carbon dioxide into concentrated water in the form of bicarbonate ion and discharging it to the ocean to dilute and store it. It does not cause re-emission to the atmosphere, and the discharged concentrated water increases the alkalinity of the ocean to prevent marine acidification. The objective of this study was to understand the behavior of DIC (Dissolved Inorganic Carbon) including carbon dioxide during the ocean discharge of bicarbonate ion concentrated water in AWL method. This study area was set near Ulleung-do where sufficient water depth and operational efficiency were secured. CORMIX model was used to calculate the material diffusion by submerged discharge using ship.