• Title/Summary/Keyword: occupational exposure limits

Search Result 114, Processing Time 0.022 seconds

Literature review of the Reduction of Hydrogen Sulfide and Ammonia in Livestock Pen: Comparison between Korean and Chinese cases (축사 내 황화수소와 암모니아의 저감방안 고찰: 한중비교)

  • Yan, Ding;Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.442-451
    • /
    • 2019
  • Objectives: The aim of this study was to review the reduction methods for ammonia (NH3) and hydrogen sulfide (H2S) exposure in livestock. Methods: By reviewing domestic and international research reports from Korea and China, reducing ammonia and hydrogen sulfide in livestock pens was analyzed in terms of ventilation, deodorant, and feed additives. In addition, exposure limits in Korea and China were examined through a comparison between 'TLV-TWA and STEL under the Industrial Safety and Health Act in Korea' and 'Management Standards for Air of Livestock Pens in China'. Results and Discussion: In order to effectively control hazardous gases and odors in livestock pens, the enhancement of natural ventilation or the addition of ventilation fans at the pollution source are being examined. Deodorants are used as adsorbents or masking deodorants. Additives to feed were zeolite powder, FeSO4·7H2O, enzymes, and microbial preparations. Use of feed additives was low-cost and had significant effects compared to other methods. Zeolite was the most commonly used in feed additive in Chinese cases and proved to be low-cost and effective for reducing harmful gases. Enzyme preparations were shown to stimulate the growth of livestock, but were expensive. Conclusions: This study reviewed and examined domestic and international research papers in Korea and China for reducing ammonia and hydrogen sulfide concentrations in livestock pens. More diverse research and the development of feed additives are needed.

Estimation of Extreme Heat Exposure at Outdoor Construction Sites through Wet Bulb Globe Temperature Modeling (습구흑구온도지수 모델링을 통한 옥외 건설 현장의 고열 노출수준 추정)

  • Saemi, Shin;Hea Min, Lee;Nosung, Ki;Jung Soo, Chae;Sang-Hoon, Byeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.402-413
    • /
    • 2022
  • Objectives: In this study, the scale of exceeding the extreme heat exposure standard at the construction site was estimated using the nationally approved statistical data and wet bulb globe temperature modeling method. By comparing and analyzing the modeling results with the existing work environment monitoring results, the risk of heat exposure at outdoor construction sites was considered. Methods: Using the coordinates of second level administrative districts and meteorological observatories as the key, the automated synoptic observing system data and building permit data for 2021 were matched. The wet-bulb temperature was obtained using Stull's formula, and the globe temperature was obtained using the TgKMA2006 model. WBGT was calculated using these. Excess rates were obtained compared to exposure limits for heavy work-continuous work and moderate work-25% rest. It was compared with the results of the work environment monitoring in 2020. Results: As a result, 1,827,536 cases were estimated for 11,052 workplaces in one year. This is much higher than the 5,116 cases of 3818 workplaces of the existing work environment monitoring results. It is confirmed that the exposure limit was exceeded in 10.6~24.0% of the entire period and 70.2~84.1% of the peak period of the heat wave. It is very high compared to 0.9% of the existing work environment monitoring result. Conclusions: It is necessary to improve the system of monitoring and statistics related to extreme heat. Additional considerations are needed regarding WBGT estimation methods, meteorological data, and evaluation time. Various follow-up risk assessment studies for other industries and time series need to be continued.

Comparisons of Urinary Arsenic Analysis by Pre-reductant for Preconditioning via the FI-HG-AAS Method (FI-HG-AAS를 이용한 전처리 과정에서 사용되는 예비환원제의 종류에 따른 요중 비소 분석결과 비교)

  • Choi, Seung-Hyun;Choi, Jae Wook;Cho, YongMin;Bae, Munjoo
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.289-298
    • /
    • 2015
  • Objectives: The method of analyzing urinary arsenic by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) is generally used because it shows relatively greater sensitivity, low detection limits, low blocking action, and is simple to operate. In this study, the results of analysis according to three pre-reductants commonly used in the FI-HG-AAS method were compared with each other. Methods: To analyze urinary arsenic, nineteen urine samples were collected from adults aged 43-79 years old without occupational arsenic exposure. Analysis equipment was FI-HG-AAS (AAnalyst 800/FIAS 400, Perkin- Elmer Inc., USA). The three pre-reductants were potassium iodide (KI/AA), C3H7NO2S (L-cysteine), and a mixture of KI/AA and L-cysteine (KI/AA&L-cysteine). Results: In the results of the analysis, the recovery rate of the method using KI/AA was 82.3%, 95.7% for Lcysteine, and 123.5% for KI/AA and L-cysteine combined. When compared with the results by use of high performance liquid chromatography inductively-coupled plasma mass spectrometry (HPLC-ICP-MS), the method using L-cysteine was the closest to those using HPLC-ICP-MS ($98.57{\mu}g/L$ for HPLC-ICP-MS; $74.96{\mu}g/L$ for L-cysteine; $69.23{\mu}g/L$ for KI/AA and L-cysteine; $13.06{\mu}g/L$ for KI/AA) and were significantly correlated (R2=0.882). In addition, they showed the lowest coefficient of variation in the results between two laboratories that applied the same method. Conclusion: The efficiency of hydride generation is considered highly important to the analysis of urinary arsenic via FI-HG-AAS. This study suggests that using L-cysteine as a pre-reductant may be suitable and the most rational among the FI-Hg-AAS methods using pre-reductants.

Analysis of Quartz Content and Particle Size Distribution of Airborne Dust from Selected Foundry Operations (주물사업장 주공정별 발생하는 분진의 석영함유량 및 크기분포 연구)

  • Phee, Young Gyu;Roh, Young Man;Lee, Kwang Mook;Kim, Hyoung-Ah;Kim, Yong Woo;Won, Jeoung Il;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.196-208
    • /
    • 1997
  • This study was performed to estimate quartz contents in the both bulk and airborne dust samples and to determine particle size distribution of airborne dust from the selected foundry operations. Total dust samples were collected by a 37mm cassette and respirable by a 10 mm nylon cyclone. Particle size distributions were determined by a Marple's 8-stage cascade impactor at the melting, molding, shakeout and finishing operations. The presence of elements in the dust samples were confirmed by the scanning electron microscopy equipped with the energy dispersive x-ray spectrometry. The quartz contents were estimated using the intensity of the absorption peak of quartz at 799 cm-l by the Fourie Transformed Infrared Spectroscopy (FTIR). The results were as follows: 1. The analysis of data from cascade Impactor showed bimodal distributions of particle size at the melting, molding and shakeout operations. Mass median aerodynamic diameters for the distributions determined by histogram were $0.48-1.65{\mu}m$ for small and $13.43-19.58{\mu}m$ for large modes. In the dust samples collected at the finishing operations, however, only a large mode of $18.89{\mu}m$ was found. 2. The percentages of total to respirable dust concentration calculated from the impactor data ranged from 42 % to 66 %. The average concentrations of respirable dust by cyclone were $0.85-1.28mg/m^3$ collected from the workers, and were $0.23-0.56mg/m^3$ from the areas surveyed. Dust concentrations of personal samples were statistically significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. 3. The mean percentages of silicon and oxygen estimated by SEM-EDXA in the bulk samples ranged from 35.83 % to 36.02 % and from 39.93 %-41.64 %, respectively. 4. The average quartz contents estimated by FTIR in the respirable dust from personal samples ranged from 4.32 % to 5.36 % and 4.54 % to 4.70 % in the bulk samples. No statistical difference of quartz content was found between foundry operations. In this study, quartz content was quantified by FTIR. Although no statistically significant difference in quartz content between airborne and bulk, samples and between different foundry operations was found, it is recommended that quartz content in the individual sample of respirable dust be analyzed and the results be used either to select an applicable quartz limits or to calculate the exposure limit. Further studies, however, are needed to compare the results by FTIR and XRD since it is reported that the quartz content determined by FTIR is different from that by XRD.

  • PDF

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part 2 - Ceramics, Stone, Concrete, Glass and Briquets, etc. (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형유리규산 농도의 분석 제2부 : 요업, 석재, 콘크리트, 유리, 연탄 및 기타사업장)

  • Kim, Hyunwook;Phee, Young Gyu;Roh, Young Man;Won, Jeoung Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.99-111
    • /
    • 1999
  • The purpose of this study was to evaluate crystalline silica contents in airborne respirable dusts from various manufacturing industries and to compare analytical ability of two different methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy(FTIR). Various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: ceramics, brick, concrete, and abrasive material etc. The personal respirable dust samples were collected using l0mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size. polyvinylchloride (PVC) filters as collection media. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 7500, and 7602 for dust collection and quartz analysis. A total of 48 samples were collected from these industries. Initial analyses of these samples showed log-normal distributions for dust and quartz concentrations. Some results from ceramics and stone exceeded current Korean Occupational Exposure Limits. The average concentrations of personal respirable dust by cyclone were 0.43, 0.24, 0.26, 0.42, 0.53 and $0.29mg/m^3$ in ceramics, stone, concrete, glass, briquets, and others, respectively. A comparison of performance of two analytical methods for quantifying crystalline silica was performed using data from ceramics. The results showed that no significant difference was found between two methods for ceramics. The mean crystalline silica contents determined by XRD were 3.41 % of samples from briquets and 7.18 % from ceramics and were 2.58 % from concrete and 10.33 % from ceramics by FTIR. For crystalline silica analysis, two analytical techniques were highly correlated with $r^2=0.81$ from ceramics. Both cristobalite and tridymite were not detected by XRD and FTIR.

  • PDF

Prioritizing for Selection of New High-heat Risk Industries and Thermal Risk Assessment (신규 고열 위험 업종 선정을 위한 우선순위 및 온열 위험 평가)

  • Saemi Shin;Hea Min Lee;Nosung Ki;Jeongmin Park;Sang-Hoon Byeon;Sungho Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.230-246
    • /
    • 2023
  • Objectives: The climate crisis has arrived and heat-related illnesses are increasing. It is necessary to discover new high-heat risk industries and understand the environment . It is also necessary to prioritize risks of industries that have not been included in the management target to date. The study was intended to monitor and evaluate the thermal risk of high-priority workplaces. Methods: A prioritization method was developed based on five factors: occurrence of and death due to heat-related illnesses, work environment monitoring, indoor work rate, small heat source, and limited heat dissipation. it, was applied to industrial accidents caused by heat-related illnesses. Wet bulb temperature index and apparent temperature were measured in July and August at 24 workplaces in seven industries and assessed for thermal risk. Results: The wet bulb temperature index was in the range of 23.8~31.9℃, and exposure limits were exceeded in the growing of crops, food services activities and accommodation, and building construction. The apparent temperature was in the range of 26.8~36.7℃, and exceeded the temperature standard for issuing heatwave warnings in growing of crops, food services activities and accommodation, warehousing, welding, and building construction. Both temperature index in growing of crops and building construction were higher than the outside air temperature. Conclusions: In the workplace, risks in industries that have not be controlled and recognized through existing systems was identified. it is necessary to provide break times according to the work-rest time ratio required during dangerous time period.

Change of Laboratory Parameters during Treatment of Lead Poisoning (연중독치료시 혈중연, 뇨중연, 뇨중 Coproporphrin, 뇨중 ${\delta}$-Aminolevulinic acid의 변화)

  • Yoo, Byoung-Kook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.11 no.1
    • /
    • pp.76-82
    • /
    • 1978
  • In order to study the change of laboratory parameters of lead poisoning, 8 persona who had not been treated previously for lead poisoning (Group 1 and 6 persons who had been inadequately treated for few months for chronic lead poisoning at local clinic (Group 2) were examined. They had occupational exposure to lead for 3 to 18 years (mean, 7.6). In group 1 blood lead, urine lead, urine coproporphyrin and ${\delta}$-aminolevulinic acid levels before our treatment exceeded the critical levels of lead poisoning. In group 2 urine lead level exceeded but blood lead, urine coproporphyrin and ${\delta}$-aminolevulinic acid levels were within normal limits. All of them were treated with D-penicillamine for 4 months as inpatients at Industrial Accident Hospital. The dose of D-penicillamine was the same in all patients; 600 mg per day p.o. and the chelating agent was administer every other week. For laboratory analysis, 24 hour urine and 10 gm of whole blood were collected every 1 month on last day of non-administration period. The results were as follows: 1. It was found that urine lead level was decreased below the cirtical level of lead poisoning after 4 month's treatment with D-penicillamine and blood lead level was decreased more progressively below the critical level after 1 month treatment. 2. Urine coproporphyrin and ${\delta}$-aminolevulinic acid levels were decreased progressively to normal range after 1 month treatment. 3. Two months after treatment, blood lead, urine lead, urine coproporphyrin and ${\delta}$-aminolevulinic acid levels showed some increasing trends. 4. Urine lead level should be checked in a person who had been inadequately treated with chelating agents because blood lead, coproporphyrin and ${\delta}$-aminolevulinic acid might be in normal range.

  • PDF

Recognition of Occupational Accidents related Multiple Sclerosis and Its Implications (다발성 경화증의 업무상 재해 인정과 그 시사점 : 대법원 2017. 8. 29. 선고 2015두3867 판결을 중심으로)

  • Jeon, Byeong-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.559-566
    • /
    • 2017
  • Despite the government operating various preventive programs to ward off accidents and diseases on business sites, diseases rates are not decreasing, unlike accident rates. In many cases, diseases caused by work have a latent period before symptoms appear or progress over a longer term, making it difficult for workers to prove the causal relation between their work and the diseases. Moreover, data related to the business site are mostly owned by the employer. Even if the employee has access to parts of such data, his lack of medical expertise limits his ability to identify the characteristics of the diseases and how it appears. In August, 2017 the Supreme Court did an about-face with its ruling on the case involving diseases caused by exposure to harmful substances in work environments, by easing the burden of proof on the employees. As such, this study focuses on the case to analyze cases involving diseases that have occurred in work environments and present their implications. In doing so, the study seeks to provide a basic set of data that can help secure the employees' labor rights and rights to health by complementing the current law in relation to recognizing industrial incidents caused by rare diseases and making work environments safer for employees.

Gas Generation by Burning Test of Cypress Specimens Treated with Boron Compounds (붕소 화합물로 처리된 편백목재 시험편의 연소시험에 의한 가스 발생)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.413-418
    • /
    • 2018
  • Cypress woods treated individually with boric acid (BA4), ammonium pentaborate (APB4), or BA4/APB4 additives were examined for combustion gases. Each of the specimens was painted with a 4 wt% solution of boron compounds three times. Dried at room temperature, the combustion gas was analyzed using a cone calorimeter (ISO 5660-1). Consequently, the second maximum oxygen consumption rate of the specimen treated with boron compounds was 0.1067 to 0.1246 g/s, which was 5.3 to 18.9%, respectively lower than that of the blank specimen. The specific extinction area of specimens treated with BA4 and APB4 was also 2.0 to 19.0% lower, respectively. However, treated with BA4/APB4 showed 21.2% higher than that of the blank specimen. The maximum carbon monoxide concentration of the specimens with boron compounds was reduced by 0 to 25%. It was estimated to be 1.6 to 2.2 times higher than the permissible exposure limits by Occupational Safety and Health Administration (OSHA), indicating a fatal toxicity. The boron compounds were effective in reducing carbon monoxide, but didn't meet the OSHA limit. The boron compound inhibited the burning behavior of the cypress wood, which suppressed the second maximum oxygen consumption rate by 5.3 to 18.9% and the maximum carbon monoxide generation by 0 to 25%.