• Title/Summary/Keyword: occupant comfort criteria

Search Result 6, Processing Time 0.02 seconds

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

Wind-Induced Motion of Tall Buildings: Designing for Occupant Comfort

  • Burton, M.D.;Kwok, K.C.S.;Abdelrazaq, A.
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • A team of researchers and practitioners were recently assembled to prepare a monograph on "Wind-Induced Motion of Tall Buildings: Designing for Habitability". This monograph presents a state-of-the-art report of occupant response to wind-induced building motion and acceptability criteria for wind-excited tall buildings. It provides background information on a range of pertinent subjects, including: ${\bullet}$ Physiological, psychological and behavioural traits of occupant response to wind-induced building motion; ${\bullet}$ A summary of investigations and findings of human response to real and simulated building motions based on field studies and motion simulator experiments; ${\bullet}$ A review of serviceability criteria to assess the acceptability of wind-induced building motion adopted by international and country-based standards organizations; ${\bullet}$ General acceptance guidelines of occupant response to wind-induced building motion based on peak acceleration thresholds; and ${\bullet}$ Mitigation strategies to reduce wind-induced building motion through structural optimization, aerodynamic treatment and vibration dissipation/absorption. This monograph is to be published by the American Society of Civil Engineers (ASCE) and equips building owners and tall building design professionals with a better understanding of the complex nature of occupant response to and acceptability of wind-induced building motion. This paper is a brief summary of the works reported in the monograph.

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

Human-Induced Vibrations in Buildings

  • Wesolowsky, Michael J.;Irwin, Peter A.;Galsworthy, Jon K.;Bell, Andrew K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Occupant footfalls are often the most critical source of floor vibration on upper floors of buildings. Floor motions can degrade the performance of imaging equipment, disrupt sensitive research equipment, and cause discomfort for the occupants. It is essential that low-vibration environments be provided for functionality of sensitive spaces on floors above grade. This requires a sufficiently stiff and massive floor structure that effectively resists the forces exerted from user traffic. Over the past 25 years, generic vibration limits have been developed, which provide frequency dependent sensitivities for wide classes of equipment, and are used extensively in lab design for healthcare and research facilities. The same basis for these curves can be used to quantify acceptable limits of vibration for human comfort, depending on the intended occupancy of the space. When available, manufacturer's vibration criteria for sensitive equipment are expressed in units of acceleration, velocity or displacement and can be specified as zero-to-peak, peak-to-peak, or root-mean-square (rms) with varying frequency ranges and resolutions. Several approaches to prediction of floor vibrations are currently applied in practice. Each method is traceable to fundamental structural dynamics, differing only in the level of complexity assumed for the system response, and the required information for use as model inputs. Three commonly used models are described, as well as key features they possess that make them attractive to use for various applications. A case study is presented of a tall building which has fitness areas on two of the upper floors. The analysis predicted that the motions experienced would be within the given criteria, but showed that if the floor had been more flexible, the potential exists for a locked-in resonance response which could have been felt over large portions of the building.

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach

  • Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.355-369
    • /
    • 2021
  • Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.