• Title/Summary/Keyword: occupant comfort

Search Result 49, Processing Time 0.028 seconds

Revisiting the "T" in TMD

  • Strobel, Kurt;Salcedo, Victor
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 2021
  • This paper explores the meaning and importance of tuning amongst other Tuned Mass Damper (TMD) parameters and describes processes to help ensure that an as-built TMD is properly tuned to the as-built high-rise building. A summary of key TMD components and TMD implementations will be presented as an introduction and review. Next, it will be shown that tuning is a means for optimizing TMD performance. A process using modal characterization tests during tower construction to estimate natural frequencies of the completed tower will be described. Finally, the use of a Frequency Response Function (FRF) as a means for verifying the frequency of a TMD will be proposed.

Development of Active Suspension System for Wheelchairs to Improve Riding Comfort of Gait Disorders (보행 장애인의 승차감 개선을 위한 휠체어용 능동형 서스펜션 시스템 개발)

  • Heo, Yeong Jun;Jeon, Geum Sang;Lee, Sang Hun;Choi, Seong Dae;Jang, Ik Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.203-209
    • /
    • 2020
  • As the number of people with gait disorders increases, the demand for using wheelchairs increases and the area of a ctivity for people with disabilities expands, thereby they increasing the demand for riding comfortability in various driving environments. Therefore, this study is to develop an entry-level active suspension system that apply to wheelchairs and to evaluate its usability. The suspension applied in this paper consists of a coil spring, a shock absorber, a control module to control the strength of the shock absorber, and a road surface condition monitoring system. A wheelchair occupant secures the riding comfort by adjusting the coil strength of the shock absorber in 12 steps according to various road conditions. Therefore, the mechanical properties were evaluated through the structural analysis of the suspension system, and the tendency toward the magnitude of the road surface vibration attenuated according to the rigidity of the suspension through the vibration test was attempted. In conclusion, as a result of structural analysis of the suspension system, stress in a range lower than the yield strength of the material was generated, and the vibration test showed the effect of attenuating the vibration generated from the road surface when the stiffness of the suspension was adjusted.

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.

A Study on the Design Prototype Development of Underfloor Air-Conditioning System(UFAC) for Improving Indoor Environment (바닥급기 공조시스템(UFAC)을 적용한 작업공간의 실내환경 평가기법 개발연구)

  • 정광섭;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.325-336
    • /
    • 2000
  • During the last decade, an increasing interest in Underfloor Air-Conditioning(UFAC) systems has emerged. The purpose of this paper is to evaluate comprehensively the indoor environmental performance of office buildings with UFAC system in order to develope the design prototype of this system. In this paper, the physical measurements and the interviewing survey of occupant's sensation responses to the environment were carried out. Measurements and survey were made of the thermal environmental factors such as air temperature, relative humidity, air velocity, globe temperature, and the other several environmental factors such as the sound level and the illuminance of working plane, etc. And, the air quality was evaluated by measuring the concentration of suspended particles, carbon monoxide, and carbon dioxide in the room. Furthermore, the paper appraises the various indoor environmental factors of the room by using post-occupancy evaluation(POE) method in office building with UFAC system, and thus, it suggests the basic data for assessing the indoor comfort based on field measurements and survey.

  • PDF

Analysis of Noise Environment of Cafe Occupants According to Interior Finishing (실내 인테리어 마감재에 따른 카페 재실자의 소음 환경 영향 분석)

  • Lee, Soo Han;Yun, Huiseung;Wi, Seunghwan;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.4
    • /
    • pp.355-361
    • /
    • 2017
  • Indoor noise environment is an important factor when it comes to occupants comfort, especially in cafe. Results of the survey, 33.9% of occupants were feel unpleasant and sensitive about noise environment. Noise in cafe fluctuate depending on the finishing of both wall and ceiling, volume of the room, and the number of occupants in the room. Therefore, the noise meter device was used for measurement of various under conditions. Also, the subjective assessment of occupant noise was conducted through questionnaires. When the interior finish was exposed concrete, the maximum value of the noise measurement was 66.6 dB and the minimum value was 63 dB, respectively. Also, the result of subjective assessment of unpleasant noise were 5.43 and 4.96 point of 10 point of noise and echo, respectively. Otherwise, the interior finish was gypsum board, the maximum value of the noise measurement was 73.8 dB and the minimum value was 60.4 dB, respectively. Also, the result of subjective assessment of unpleasant noise were 3.88 and 3.95 point of 10 point of noise and echo, respectively. The results of the study showed that the noises and echoes in the cafes were lower than when did not.

A Review of Scientific Evidence on Indoor Air of School Building: Pollutants, Sources, Health Effects and Management

  • Chithra, V.S;Shiva, Nagendra S.M
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.87-108
    • /
    • 2018
  • Schools are one of the critical social infrastructures in a society, the first place for social activity and the most important indoor environment for children besides the home. Poor IAQ in classrooms can increase the chance of long-term and short-term health problems for students and staffs; affects productivity of teachers; and degrade the student learning environment and comfort levels. The primary objective of this paper is to review and summarize available scientific evidence on indoor air quality of schools and related health effects in children. It was found that the indoor air pollutant levels in school buildings varied over a wide range in different parts of the world depending on site characteristics, climatic conditions, outdoor pollution levels, occupant activities, ventilation type and building practices. Among the indoor air pollutants, particulate matter concentrations were found to be very high in many schools. Outdoor pollutant sources also play a major role in affecting the IAQ of the school building. Hence, scientific knowledge on sources of indoor pollutants, quantification of emissions, temporal and spatial dispersion of pollutants, toxicological properties, chemical and morphological characteristics of the pollutants and associated health risk among children in the school buildings are essential to evaluate the adequacy and cost effectiveness of control strategies for mitigating the IAQ issues.

The Effect of Illuminance and Color Temperature of LED Lighting on Occupants' Perception and HRV

  • Seo, Han Suk;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.37-43
    • /
    • 2015
  • Purpose: It is crucially important that indoor luminous conditions of built environments be carefully studied so as to promote comfort and occupants' well-being. Method: The current study therefore focuses on the lit aspect of an enclosed space considered to be a resting room ($4.5m{\times}6.32m{\times}2.5m$). Particularly, on the effect that light levels and light color temperatures have on the physiological and psychological responses of resting occupants. To do so, a questionnaire survey was carried out on 50 subjects. The independent variables for the experiment included 9 different luminous environment conditions setup using 3 different levels of illuminance (50 lx, 150 lx, 300 lx) and 3 different color temperatures (2000 K, 3800 K, 5600 K). A questionnaire was utilized in determining which conditions were preferred by occupants. Result: As it turns out, indoor luminous environment designed for relaxation purposes should display luminance levels of at least 150 lx and 3800 K of color temperature in order to provide a visually comfortable environment suitable for the occupant's relaxation while at the same time promoting the psychological and HRV well-being of resting occupants.

Optimal design of the floor panel for an automotive platform under uncertainty of the vehicle length

  • Lahijani, Abdolah Tavakoli;Shojaeefard, M.H.;Khalkhali, Abolfazl
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2018
  • Length of a vehicle is an important variation to generate different variants of an automotive platform. This parameter is usually adjusted by embedding dimensional flexibility into different components of the Body in White (BIW) including the floor pan. Due to future uncertainties, it is not necessarily possible to define certain values of wheelbase for the future products of a platform. This work is performed to add flexibility into the design process of a length-variable floor pan. By means of this analysis, the cost and time consuming process of optimization is not necessary to be performed for designing the different variants of a product family. Stiffness and mass of the floor pan are two important functional requirements of this component which directly affect the occupant comfort, dynamic characteristics, fuel economy and environmental protection of the vehicle. A combination of Genetic algorithm, GMDH-type of artificial neural networks and TOPSIS methods is used to optimally design the floor pan associated with arbitrary length of the variant in the defined system range. The correlation between the optimal results shows that for a constant mass of the floor pan, the first natural frequency decreases by increasing the length of this component.

Effects of Driving Environment on Driver's Posture (주행중 운전자세 측정을 통한 주행조건 영향 분석)

  • Kim, Taeil;Choi, Kwangsoo;Jung, Eui S.;Park, Sungjoon;Choi, Jaeho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.271-282
    • /
    • 2003
  • Automotive occupant packaging has been a part of main ergonomics interests, especially, in terms of driver's posture. Previous research on driver's posture has mainly focused on the initial optimal posture for driving sedans. However, customer preferences on cars are shifting from sedans to RV and automobile manufacturing companies seek to understand temporal changes in drivers' posture according to driving environment. So the main aim of this study was to develop a driver's posture measurement system during driving and investigate casual changes due to duration, car type, traffic flow. Four male drivers participated in the experiments during one week. It was shown that considerable changes in their postures were caused with respect to driving environment, which implies that not only static optimal postures but their dynamic changes should be taken into consideration for proper design and evaluation of interior packaging. The research is expected to help packaging designers understand human drivers so as to improve their comfort.

A review of two theories of motion sickness and their implications for tall building motion sway

  • Walton, D.;Lamb, S.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.499-515
    • /
    • 2011
  • Low-frequency building vibration is known to induce symptoms of motion sickness in some occupants. This paper examines how the adoption of a theory of motion sickness, in conjunction with a dose-response model might inform the real-world problem of managing and designing standards for tall building motion sway. Building designers require an understanding of human responses to low-dosage motion that is not adequately considered by research into motion sickness. The traditional framework of Sensory Conflict Theory is contrasted with Postural Instability Theory. The most severe responses to motion (i.e., vomiting) are not experienced by occupants of wind-excited buildings. It is predicted that typical response sets to low-dosage motion (sleepiness and fatigue), which has not previously been measured in occupants of tall-buildings, are experienced by building occupants. These low-dose symptoms may either be masked from observation by the activity of occupants or misattributed to the demands of a typical working day. An investigation of the real-world relationship between building motion and the observation of low-dose motion sickness symptoms and a degradation of workplace performance would quantify these effects and reveal whether a greater focus on designing for occupant comfort is needed.