• Title/Summary/Keyword: observation-error model

Search Result 259, Processing Time 0.025 seconds

Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme (모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링)

  • Park, Sang-Sik;Kang, Boo-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

Auto-calibration for the SWAT Model Hydrological Parameters Using Multi-objective Optimization Method (다중목적 최적화기 법을 이용한 SWAT 모형 수분매개변수의 자동보정)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo;Choi, Ji-Yong;Yang, Hee-Jeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.

Thermal pointing error analysis of the observation satellites with interpolated temperature based on PAT method (PAT 기반 온도장 보간을 이용한 관측위성의 열지향오차해석)

  • Lim, Jae Hyuk;Kim, Sun-Won;Kim, Jeong-Hoon;Kim, Chang-Ho;Jun, Hyoung-Yoll;Oh, Hyeon Cheol;Shin, Chang Min;Lee, Byung Chai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.80-87
    • /
    • 2016
  • In this work, we conduct a thermal pointing error analysis of the observation satellites considering seasonal and daily temperature variation with interpolated temperature based on prescribed average temperature (PAT) method. Maximum 200 degree temperature excursion is applied to the observation satellites during on-orbit operation, which cause the line of sight (LOS) to deviate from the designated pointing direction due to thermo-elastic deformation. To predict and adjust such deviation, the thermo-elastic deformation analysis with a fine structural finite element model is accomplished with interpolated thermal maps calculated from the results of on-station thermal analysis with a coarse thermal model. After verifying the interpolated temperatures by PAT with two benchmark problems, we evaluate the thermal pointing error.

Simplified Noise Modeling of GPS Measurements for a Fast and Reliable Cycle Ambiguity Resolution

  • Park, Byung-Woon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.535-540
    • /
    • 2006
  • The relationship between the observable noise model and the satellite elevation angle can be modeled quite well by an exponential function.[Jin, 1996] Noise size and dependence on the elevation angle are, however, different for each observation and receiver type. Therefore, the coefficient determination of this model is an issue, and various methods including PR-CP, single difference, and time difference have been suggested. The limitations of them are difficulty to model the carrier phase noise and to eliminate bias. To overcome these disadvantages for using Jin's model, we suggest zero baseline double difference (DD) and noise sorting algorithm. Data DD technique in zero baseline is useful to eliminate all the troublesome GPS biases, and the remaining error is the sum of GPS measurement noises from two satellites. These DD residuals for hours should be sorted by the combination of satellite elevation angles, and then variance value of the residual for each combination can be estimated. Using these values, we construct an over-determined linear equation whose solution is a set of noise variance for each satellite elevation angle. With 24hr Trimble 4000ssi data, we easily worked out the coefficients of the noise model not only for pseudorange but also for carrier phase. We estimated the standard deviation of the measurement DD using our model, and plotted 1 and 3 sigma lines for every epoch to verify the representation of the residual error. 63.3% of pseudorange residual and 65.9% of phase error did not exceed the 1 sigma lines. Additionally, 99.2% and 99.5% of them lied within 3sigma line. These figures prove that the Gaussian property of measurement noise, and that the suggested model by our algorithm corresponds to the observable noise information.

  • PDF

Sampling Error Variation due to Rainfall Seasonality

  • Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.7-14
    • /
    • 2001
  • In this study, we characterized the variation of sampling errors using the Waymire-Gupta-rodriguez-Iturbe multi-dimensional rainfall model (WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considering in this study are those far using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of mentally rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather norma1 to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain area than in the down stream plain area.

  • PDF

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

Separating Signals and Noises Using Mixture Model and Multiple Testing (혼합모델 및 다중 가설 검정을 이용한 신호와 잡음의 분류)

  • Park, Hae-Sang;Yoo, Si-Won;Jun, Chi-Hyuck
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.759-770
    • /
    • 2009
  • A problem of separating signals from noises is considered, when they are randomly mixed in the observation. It is assumed that the noise follows a Gaussian distribution and the signal follows a Gamma distribution, thus the underlying distribution of an observation will be a mixture of Gaussian and Gamma distributions. The parameters of the mixture model will be estimated from the EM algorithm. Then the signals and noises will be classified by a fixed threshold approach based on multiple testing using positive false discovery rate and Bayes error. The proposed method is applied to a real optical emission spectroscopy data for the quantitative analysis of inclusions. A simulation is carried out to compare the performance with the existing method using 3 sigma rule.

Random Parameter Negative Binomial Models of Interstate Accident Frequencies on Interchange Segment by Interchange Type/Region (RPNB 모형을 이용한 고속도로 인터체인지 구간에서의 교통사고모형 - 인터체인지 형태별/지역별로)

  • Lee, Geun Hee;Park, Minho;Roh, Jeonghyun
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.133-142
    • /
    • 2014
  • PURPOSES : The objective was to develop the advanced method which could not explain each observation's specific characteristic in the present negative binomial method that results in under-estimation of the standard error(t-value inflation) and affects the confidence of whole derived results. METHODS : This study dealt with traffic accidents occurring within interchange segment on highway main line with RPNB(Random Parameter Negative Binomial) method that enables to take account of heterogeneity. RESULTS : As a result, AADT and lighting installation type on the road were revealed to have random parameter and in terms of other geometric variables, all were derived as fixed parameter(same effect on every segment). Also, marginal effects were adapted to analyze the relative effects on traffic accidents. CONCLUSIONS : This study proves that RPNB method which considers each observation's specific characteristics is better fitted to the accident data with geometrics. Thus, it is recommended that RPNB model or other methods which could consider the heterogeneity needs to be adapted in accident analysis.

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF