• Title/Summary/Keyword: observation-error model

Search Result 259, Processing Time 0.021 seconds

Validation of KREAM Based on In-Situ Measurements of Aviation Radiation in Commercial Flights

  • Hwang, Junga;Kwak, Jaeyoung;Jo, Gyeongbok;Nam, Uk-won
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.229-236
    • /
    • 2020
  • There has been increasing necessity of more precise prediction and measurements of aviation radiation in Korea. For our air crew and passengers' radiation safety, we develop our own radiation prediction model of KREAM. In this paper, we validate the KREAM model based on comparison with Liulin observations. During early three months of this year, we perform total 25 experiments to measure aviation radiation exposure using Liulin-6K in commercial flights. We found that KREAM's result is very well consistent with Liulin observation in general. NAIRAS shows mostly higher results than Liulin observation, while CARI-6M shows generally lower results than the observations. The percent error of KREAM compared with Liulin observation is 10.95%. In contrast, the error for NAIRAS is 43.38% and 22.03% for CARI-6M. We found that the increase of the altitude might cause sudden increase in radiation exposure, especially for the polar route. As more comprehensive and complete analysis is required to validate KREAM's reliability to use for the public service, we plan to expand these radiation measurements with Liulin and Tissue Equivalent Proportional Counter (TEPC) in the near future.

Design of Human-Error Detect Filter (휴먼에러의 검출 필터 설계)

  • Kim, Hwan-Seong;Kim, Seung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.121-123
    • /
    • 2009
  • In previous research results, human error can be detected by using observation theory which assumed with step human failures, thus the detector has a limit to detect the human failures. In this paper, we propose a human error detect filter for given human failures. Various kind of human failures can be modeled, and from these models, an argumented human failure model can constructed. By using the argumented human failure model, the human error detect filter can be designed.

  • PDF

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.72-80
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identification. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identification are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identity the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, Dong-Cheol;Chung, Hyung-Hwan;Bae, Jong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2690-2692
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identifcation. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identifcation are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identify the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Hourly Water Level Simulation in Tancheon River Using an LSTM (LSTM을 이용한 탄천에서의 시간별 하천수위 모의)

  • Park, Chang Eon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.51-57
    • /
    • 2024
  • This study was conducted on how to simulate runoff, which was done using existing physical models, using an LSTM (Long Short-Term Memory) model based on deep learning. Tancheon, the first tributary of the Han River, was selected as the target area for the model application. To apply the model, one water level observatory and four rainfall observatories were selected, and hourly data from 2020 to 2023 were collected to apply the model. River water level of the outlet of the Tancheon basin was simulated by inputting precipitation data from four rainfall observation stations in the basin and average preceding 72-hour precipitation data for each hour. As a result of water level simulation using 2021 to 2023 data for learning and testing with 2020 data, it was confirmed that reliable simulation results were produced through appropriate learning steps, reaching a certain mean absolute error in a short period time. Despite the short data period, it was found that the mean absolute percentage error was 0.5544~0.6226%, showing an accuracy of over 99.4%. As a result of comparing the simulated and observed values of the rapidly changing river water level during a specific heavy rain period, the coefficient of determination was found to be 0.9754 and 0.9884. It was determined that the performance of LSTM, which aims to simulate river water levels, could be improved by including preceding precipitation in the input data and using precipitation data from various rainfall observation stations within the basin.

A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis (다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구)

  • 김태철;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

DEVELOPMENT OF DAYTIME OBSERVATION MODEL FOR STAR SENSOR AND CENTROIDING PERFORMANCE ANALYSIS (주간 별 센서 관측 모델 개발 및 중심찾기 성능 분석)

  • Nah, Ja-Kyoung;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.273-282
    • /
    • 2005
  • A star sensor daytime observation model is developed in order to test the performance of the star sensor useful for daylight application. The centroid errors of the star sensor in the day time application are computed by using the model. The standard atmospheric model (LOWTRAN7) is utilized to calculate the physical quantities of the daylight atmospheric environments where the star sensor is immersed. This observation model takes the separation angles between the sun and star, the centroid algorithm and the various system specifications of the star sensor into the account. The developed star sensor model will provide more realistic measurement errors in estimating the performance of the attitude determination from the vector observations.