• Title/Summary/Keyword: observation-error model

Search Result 259, Processing Time 0.025 seconds

Comparison of Chlorophyll Algorithms in the Bohai Sea of China

  • Xiu, Peng;Liu, Yuguang;Rong, Zengrui;Zong, Haibo;Li, Gang;Xing, Xinogang;Cheng, Yongcun
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.199-209
    • /
    • 2007
  • Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations were evaluated in the Bohai Sea of China by using an extensive field observation data set. Bohai Sea represents an example of optically complex case II waters with high concentrations of colored dissolved organic mattei (CDOM). The data set includes coincident measurements of radiometric quantities and chlorophyll a concentration (Chl), which were taken on 8 cruises between 2003 and 2005, The data covers a range of variability in Chl in surface waters from 0.3 to 6.5 mg $m^{-3}$. The comparison results showed that these empirical algorithms developed for case I and case II waters can not be applied directly to the Bohai Sea of china, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product was 1.85 and the root mean square (RMS) error is 2.26.

Aerosol radiative forcing estimated from ground-based sky radiation measurements over East Asia

  • Kim, Do-Hyeong;Sohn, B.J.;Nakajima, T.;Okada, I.;Takamura, T.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.12-16
    • /
    • 2002
  • The clear sky radiative forcings of aerosols were evaluated over East Asia. We first investigated optical characteristics of aerosol using sky radiation measurements. An algorithm of Nakajima et al. (1996) is used for retrieving aerosol parameters such as optical thickness, ${\AA}$ngstr$\"{O}$m exponent, single scattering albedo, and size distribution from sky-radiation measurements, which then can be used for examining spatial and temporal variations of aerosol. Obtaining aerosol radiative forcing at TOA and surface, a radiative transfer model is used with inputs of obtained aerosol parameters and GMS-5 satellite-based cloud optical properties. Results show that there is a good agreement of simulated downwelling radiative flux at the surface with observation within 10 W m$^{-2}$ rms errors under the clear sky condition. However, a relatively large difference up to 40 W m$^{-2}$ rms error is found under the cloudy sky condition. The computed aerosol radiative forcing at the surface shows downward flux changes ranging from -100 to -170 W m$^{-2}$ per unit aerosol optical thickness at 0.7 $\mu$m. The different values of aerosol radiative forcing among the stations is mainly due to the differences in single scattering albedo ($\omega$$_{0.7}$) and asymmetric parameter (g$_1$) related to the geographical and seasonal variations.

  • PDF

MODIS AEROSOL RETRIEVAL IN FINE SPATIAL RESOLUTION FOR LOCAL AND URBAN SCALE AIR QUALITY MONITORING APPLICATIONS

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.378-380
    • /
    • 2005
  • Remote sensing of atmospheric aerosol using MODIS satellite data has been proven to be very useful in global/regional scale aerosol monitoring. Due to their large spatial resolution of $10km^2$ MODIS aerosol optical thickness (AOT) data have limitations for local/urban scale aerosol monitoring applications. Modified Bremen Aerosol Retrieval (BAER) algorithm developed by von Hoyningen-Huene et al. (2003) and Lee et al. (2005) has been applied in this study to retrieve AOT in fe resolutions of $500m^2$ over Korea. Look up tables (LUTs) were constructed from the aerosol properties based on sun-photometer observation and radiation transfer model calculations. It was found that relative error between the satellite products and the ground observations was within about $15\%$. Resulting AOT products were correlated with surface PMIO concentration data. There was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for local and urban scale air quality monitoring

  • PDF

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

COMPARISONS OF MTSAT-1R INFRARED CHANNEL MEASUREMENTS WITH MODIS/TERRA

  • Han, Hyo-Jin;Sohn, Byung-Ju;Park, Hye-Suk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.651-654
    • /
    • 2006
  • Infrared channels of newly launched Japanese geostationary satellite, MTSAT-1R are compared with well calibrated MODIS/Terra infrared measurements at 3.7, 6.7, 11, 12 ${\mu}m$ bands. There are four steps in this intercalibration method: 1) data collection, 2) spectral response function correction, 3) data collocation, and 4) calculation of mean bias and conversion coefficients. In order to minimize the navigation error of MTSAT-1R, comparisons are made over the area in which the viewing angle of MTSAT-1R is less than 50$^{\circ}$. The calibration method was tested for August 2005 and within the 40$^{\circ}N$-40$^{\circ}S$, 100$^{\circ}$E-180$^{\circ}$E domain. The differences of spectral response functions were corrected through radiative transfer model simulation. Constructing collocated data differences in viewing geometry, observation time and space were taken into account. In order to avoid the radiance variation induced by cloud presence, clear-sky targets are selected as intercalibration target. The mean biases of 11, 12, 6.7, and 3.7 ${\mu}m$ bands are about -0.16, 0.36, 1.31, and -6.69 K, suggesting that accuracies of 3.7 ${\mu}m$ is questionable while other channels are comparable to MODIS

  • PDF

Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera (소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어)

  • Kang, Myoungsoo;Hwang, Jaihyuk;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.

Atmospheric correction algorithms for satellite ocean color data: performance comparison of "OCTS-type" and "CZCS-type" algorithms

  • Fukushima, Hajime;Mitomi, Yasushi;Otake, Takashi;Toratani, Mitshiro
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.307-312
    • /
    • 1998
  • The paper first describes the atmospheric correction algorithm for the Ocean Color and Temperature Scanner (OCTS) visible band data used at Earth Observation Center (EOC) of National Space Development Agency of Japan (NASDA). It uses 10 candidate aerosol models including "Asian dust model" introduced in consideration of the unique feature of aerosols over the east Asian waters. Based on the observations at 670 and 865 nm bands where the reflectance of the water body can be discarded, the algorithm selects a pair of aerosol models that accounts best for the observed spectral reflectances to synthesize the aerosol reflectance in other bands. The paper also evaluates the performance of the algorithm by comparing the satellite estimates of water-leaving radiance and chlorophyll-a concentration with selected buoy-and ship-measured data. In comparison with the old CZCS-type atmospheric correction algorithm where the aerosol reflectance is as-sumed to be spectrally independent, the OCTS algorithm records factor 2-3 less error in estimating the normalized water-leaving radiances. In terms of chlorophyll-a concentration estimation, however, the accuracy stays vey similar compared to that of the CZCS-type algorithm. This is considered to be due to the nature of in-water algorithm which relies on spectral ratio of water-leaving radiances.

  • PDF

MEASUREMENT AND SIMULATION OF EQUATORIAL IONOSPHERIC PLASMA BUBBLES TO ASSESS THEIR IMPACT ON GNSS PERFORMANCE

  • Tsujii, Toshiaki;Fujiwara, Takeshi;Kubota, Tetsunari;Satirapod, Chalermchon;Supnithi, Pornchai;Tsugawa, Takuya;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.607-613
    • /
    • 2012
  • Ionospheric anomaly is one of the major error sources which deteriorate the GNSS performance. In the equatorial region, effects of the ionospheric plasma bubbles are of great interest because they are pretty common phenomena, especially in the period of the high solar activity. In order to evaluate the GNSS performance under circumstance of the bubbles, an ionospheric scintillation monitor has been developed and installed in Bangkok, Thailand. Furthermore, a model simulating the ionospheric delay and scintillation due to the bubbles has been developed. Based on these developments, the effects of the simulated plasma bubbles are analyzed and their agreement with the real observation is demonstrated. An availability degradation of the GPS ground based augmentation system (GBAS) caused by the bubbles is exampled in details. Finally, an integrated GPS/INS approach based on the Doppler frequency is proposed to remedy the deterioration.

Time Constant Estimation of Induction Motor rotor using MRAS Fuzzy Control (MRAS 퍼지제어를 이용한 유도전동기 회전자의 시정수 추정)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa;Cha Young-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • This paper presents time a constant estimation of induction motor using MRAS(model reference adaptive system) fuzzy control. The rotor time constant is enabled from the estimation of rotor flux, which has two methods. One is to estimate it based on the stator current and the other is to integrate motor terminal voltage. If the parameters are correct, these two methods must yield the same results. But, for the case where the rotor time constant is over or under estimated, the two rotor nut estimation have different angles. Furthermore their angular positions are related to the polarity of rotor time constant estimation error. Based on these observation, this paper develops a rotor time constant update algorithm using fuzzy control. This paper shows the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Implementation of Industrial AC Motor Drive Using the Direct Vector Control (직접벡터제어에 의한 산업용 전동기의 구동시스템 구현)

  • 손진근;박종찬;문학룡;김병진;전희종
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 1998
  • In the field of industrial drives, the vector control of the induction motor has been widely used to achieve the good control performance. In this paper, to require the information of rotor flux in direct vector control scheme, the flux observer by current model of rotor circuit is used. This flux observer is not only available at low-speed region bt good for the error reduction by feedback properties. Also, employing the flux observer on rotor reference frame, the robustness of decoupling control to the observation of rotor flux can be achieved. Through digital simulation and DSP-based IGBT inverter system, the validity for practical implementation is verified.

  • PDF