• Title/Summary/Keyword: observation model

Search Result 2,361, Processing Time 0.034 seconds

Why Culture Matters: A New Investment Paradigm for Early-stage Startups (조직문화의 중요성: 초기 스타트업에 대한 투자 패러다임의 전환)

  • Daehwa Rayer Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • In the midst of the current turbulent global economy, traditional investment metrics are undergoing a metamorphosis, signaling the onset of what's often referred to as an "Investment cold season". Early-stage startups, despite their boundless potential, grapple with immediate revenue constraints, intensifying their pursuit of critical investments. While financial indicators once took center stage in investment evaluations, a notable paradigm shift is underway. Organizational culture, once relegated to the sidelines, has now emerged as a linchpin in forecasting a startup's resilience and enduring trajectory. Our comprehensive research, integrating insights from CVF and OCAI, unveils the intricate relationship between organizational culture and its magnetic appeal to investors. The results indicate that startups with a pronounced external focus, expertly balanced with flexibility and stability, hold particular allure for investment consideration. Furthermore, the study underscores the pivotal role of adhocracy and market-driven mindsets in shaping investment desirability. A significant observation emerges from the study: startups, whether they secured investment or failed to do so, consistently display strong clan culture, highlighting the widespread importance of nurturing a positive employee environment. Leadership deeply anchored in market culture, combined with an unwavering commitment to innovation and harmonious organizational practices, emerges as a potent recipe for attracting investor attention. Our model, with an impressive 88.3% predictive accuracy, serves as a guiding light for startups and astute investors, illuminating the intricate interplay of culture and investment success in today's economic landscape.

  • PDF

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

A Tracer Study on Mankyeong River Using Effluents from a Sewage Treatment Plant (하수처리장 방류수를 이용한 추적자 시험: 만경강 유역에 대한 사례 연구)

  • Kim Jin-Sam;Kim Kang-Joo;Hahn Chan;Hwang Gab-Soo;Park Sung-Min;Lee Sang-Ho;Oh Chang-Whan;Park Eun-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.82-91
    • /
    • 2006
  • We investigated the possibility of using effluents from a municipal sewage treatment plant (STP) as tracers a tracer for hydrologic studies of rivers. The possibility was checked in a 12-km long reach downstream of Jeonju Municipal Sewage Treatment Plant (JSTP). Time-series monitoring of the water chemistry reveals that chemical compositions of the effluent from the JSTP are fluctuating within a relatively wide range during the sampling period. In addition, the signals from the plant were observed at the downstream stations consecutively with increasing time lags, especially in concentrations of the conservative chemical parameters (concentrations f3r chloride and sulfate, total concentration of major cations, and electric conductivity). Based on this observation, we could estimate the stream flow (Q), velocity (v), and dispersion coefficient (D). A 1-D nonreactive solute-transport model with automated optimization schemes was used for this study. The values of Q, v, and D estimated from this study varied from 6.4 to $9.0m^3/sec$ (at the downstream end of the reach), from 0.06 to 0.10 m/sec, and from 0.7 to $6.4m^2/sec$, respectively. The results show that the effluent from a large-scaled municipal STP frequently provides good, multiple natural tracers far hydrologic studies.

A Comparative Study on Reservoir Level Prediction Performance Using a Deep Neural Network with ASOS, AWS, and Thiessen Network Data

  • Hye-Seung Park;Hyun-Ho Yang;Ho-Jun Lee; Jongwook Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • In this paper, we present a study aimed at analyzing how different rainfall measurement methods affect the performance of reservoir water level predictions. This work is particularly timely given the increasing emphasis on climate change and the sustainable management of water resources. To this end, we have employed rainfall data from ASOS, AWS, and Thiessen Network-based measures provided by the KMA Weather Data Service to train our neural network models for reservoir yield predictions. Our analysis, which encompasses 34 reservoirs in Jeollabuk-do Province, examines how each method contributes to enhancing prediction accuracy. The results reveal that models using rainfall data based on the Thiessen Network's area rainfall ratio yield the highest accuracy. This can be attributed to the method's accounting for precise distances between observation stations, offering a more accurate reflection of the actual rainfall across different regions. These findings underscore the importance of precise regional rainfall data in predicting reservoir yields. Additionally, the paper underscores the significance of meticulous rainfall measurement and data analysis, and discusses the prediction model's potential applications in agriculture, urban planning, and flood management.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Spatial Distribution Patterns and Prediction of Hotspot Area for Endangered Herpetofauna Species in Korea (국내 멸종위기양서·파충류의 공간적 분포형태와 주요 분포지역 예측에 대한 연구)

  • Do, Min Seock;Lee, Jin-Won;Jang, Hoan-Jin;Kim, Dae-In;Park, Jinwoo;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.4
    • /
    • pp.381-396
    • /
    • 2017
  • Understanding species distribution plays an important role in conservation as well as evolutionary biology. In this study, we applied a species distribution model to predict hotspot areas and habitat characteristics for endangered herpetofauna species in South Korea: the Korean Crevice Salamander (Karsenia koreana), Suweon-tree frog (Hyla suweonensis), Gold-spotted pond frog (Pelophylax chosenicus), Narrow-mouthed toad (Kaloula borealis), Korean ratsnake (Elaphe schrenckii), Mongolian racerunner (Eremias argus), Reeve's turtle (Mauremys reevesii) and Soft-shelled turtle (Pelodiscus sinensis). The Kori salamander (Hynobius yangi) and Black-headed snake (Sibynophis chinensis) were excluded from the analysis due to insufficient sample size. The results showed that the altitude was the most important environmental variable for their distribution, and the altitude at which these species were distributed correlated with the climate of that region. The predicted distribution area derived from the species distribution modelling adequately reflected the observation site used in this study as well as those reported in preceding studies. The average AUC value of the eigh species was relatively high ($0.845{\pm}0.08$), while the average omission rate value was relatively low ($0.087{\pm}0.01$). Therefore, the species overlaying model created for the endangered species is considered successful. When merging the distribution models, it was shown that five species shared their habitats in the coastal areas of Gyeonggi-do and Chungcheongnam-do, which are the western regions of the Korean Peninsula. Therefore, we suggest that protection should be a high priority in these area, and our overall results may serve as essential and fundamental data for the conservation of endangered amphibian and reptiles in Korea.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Experimental Study on the Effect of Filter Layers on Pumping Capacity and Well Efficiency in an Unconfined Aquifer (자유면대수층에서 필터층이 취수량 및 우물효율에 미치는 영향에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Choi, Yong-Soo;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.405-416
    • /
    • 2017
  • This study evaluated a model unconfined aquifer comprising a sand or gravel layer, a filter layer, a pumping well, and an observation well. The model was employed in step drawdown tests and then used to assess the permeability of each test tank. The optimal yield and well efficiency were then calculated. Evaluation of yield by step in sand layer filters of equal thickness gave optimized watering rates of 22.03 L/min in the double filter and 19.71 L/min in the single filter. The double filter's yield was 115.0% that of the single filter. A comparison of double and single filters, each 10 cm thick, showed the double filter to have a maximum yield of 182.7%. Yields for the gravel layer were 73.56 L/min for a double filter and 65.47 L/min for a single filter of the same thickness; the former value is 112.3% of that of the latter. Comparison of double and single filters with 10-cm-thick gravel layers revealed that the double filter had a maximum yield of 160.9%. Results for sand wells showed the double filter to have a maximum efficiency of 70.4% and the single filter to have a minimum efficiency of 37.1%. Gravel-layer well efficiencies were >66.5% for both double and single filters (each 30 cm thick), but only 22.5% for a 10-cm-thick single filter. This study confirms that permeability improved as the filter material became thicker; it also shows that a double filter has a higher yield and well efficiency than a single filter. These results can be applied to the practical design of wells.

Interannual Variation of the TOMS Total Ozone and Reflectivity over the Globe (전지구에 대한 TOMS 오존전량과 반사율의 경년 변화)

  • Yoo, Jung-Moon;Jeon, Won-Sun
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.703-718
    • /
    • 2000
  • In order to investigate interannual variation of total ozone and reflectivity over the globe, Nimbus-7/TOMS data were used on the monthly mean and its anomaly for the period of 1979-92. This study also examined MSU channel 4(Ch4; lower-stratosphere) brightness temperature data and two model reanalyses of NCEP and GEOS to compare the ozone variation with atmospheric thermal condition. In addition, the MSU channel 1(Ch1 ; lower-troposphere) brightness temperature was used to compare with the reflectivity. The ozone showed strong annual cycle with downward trend(-6.3${\pm}$0.6 DU/decade) over the globe, and more distinct response to volcanic eruption than El Ni${\tilde{n}$o. The relationship between total ozone and MSU Ch4 observation, and between the ozone and model reanalyses of lower stratosphere temperature showed positive correlation(0.2-0.7) during the period of 1980-92. Reflectivity increased interannually by 0.2${\pm}$0.06%/decade over the globe during the above period and reflected El Ni${\tilde{n}$o(1982-83, 1991-92) well. Its variability in annual cycle was remarkably smaller in tropics than in higher latitudes. This is inferred due to cloud suppression and tropical upwelling regions. Reflectivity correlated negatively(-0.9) to the Ch1 temperature over the globe, but positively(0.2) over tropical ocean. The positive value over the ocean results from the effect of microwave emissivity which increases the Ch1 temperature with enhanced hydrometeor activity. Significant correlations between total ozone and the Ch4 temperature, and between reflectivity and the Ch1 Suggest that the TOMS data may use valuably to better understand the feedback mechanism of climate change.

  • PDF

A Comparative Case Study on the Adaptation Process of Advanced Information Technology: A Grounded Theory Approach for the Appropriation Process (신기술 사용 과정에 관한 비교 사례 연구: 기술 전유 과정의 근거이론적 접근)

  • Choi, Hee-Jae;Lee, Zoon-Ky
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.99-124
    • /
    • 2009
  • Many firms in Korea have adopted and used advanced information technology in an effort to boost efficiency. The process of adapting to the new technology, at the same time, can vary from one firm to another. As such, this research focuses on several relevant factors, especially the roles of social interaction as a key variable that influences the technology adaptation process and the outcomes. Thus far, how a firm goes through the adaptation process to the new technology has not been yet fully explored. Previous studies on changes undergone by a firm or an organization due to information technology have been pursued from various theoretical points of views, evolved from technological and institutional views to an integrated social technology views. The technology adaptation process has been understood to be something that evolves over time and has been regarded as cycles between misalignments and alignments, gradually approaching the stable aligned state. The adaptation process of the new technology was defined as "appropriation" process according to Poole and DeSanctis (1994). They suggested that this process is not automatically determined by the technology design itself. Rather, people actively select how technology structures should be used; accordingly, adoption practices vary. But concepts of the appropriation process in these studies are not accurate while suggested propositions are not clear enough to apply in practice. Furthermore, these studies do not substantially suggest which factors are changed during the appropriation process and what should be done to bring about effective outcomes. Therefore, research objectives of this study lie in finding causes for the difference in ways in which advanced information technology has been used and adopted among organizations. The study also aims to explore how a firm's interaction with social as well as technological factors affects differently in resulting organizational changes. Detail objectives of this study are as follows. First, this paper primarily focuses on the appropriation process of advanced information technology in the long run, and we look into reasons for the diverse types of the usage. Second, this study is to categorize each phases in the appropriation process and make clear what changes occur and how they are evolved during each phase. Third, this study is to suggest the guidelines to determine which strategies are needed in an individual, group and organizational level. For this, a substantially grounded theory that can be applied to organizational practice has been developed from a longitudinal comparative case study. For these objectives, the technology appropriation process was explored based on Structuration Theory by Giddens (1984), Orlikoski and Robey (1991) and Adaptive Structuration Theory by Poole and DeSanctis (1994), which are examples of social technology views on organizational change by technology. Data have been obtained from interviews, observations of medical treatment task, and questionnaires administered to group members who use the technology. Data coding was executed in three steps following the grounded theory approach. First of all, concepts and categories were developed from interviews and observation data in open coding. Next, in axial coding, we related categories to subcategorize along the lines of their properties and dimensions through the paradigm model. Finally, the grounded theory about the appropriation process was developed through the conditional/consequential matrix in selective coding. In this study eight hypotheses about the adaptation process have been clearly articulated. Also, we found that the appropriation process involves through three phases, namely, "direct appropriation," "cooperate with related structures," and "interpret and make judgments." The higher phases of appropriation move, the more users represent various types of instrumental use and attitude. Moreover, the previous structures like "knowledge and experience," "belief that other members know and accept the use of technology," "horizontal communication," and "embodiment of opinion collection process" are evolved to higher degrees in their dimensions of property. Furthermore, users continuously create new spirits and structures, while removing some of the previous ones at the same time. Thus, from longitudinal view, faithful and unfaithful appropriation methods appear recursively, but gradually faithful appropriation takes over the other. In other words, the concept of spirits and structures has been changed in the adaptation process over time for the purpose of alignment between the task and other structures. These findings call for a revised or extended model of structural adaptation in IS (Information Systems) literature now that the vague adaptation process in previous studies has been clarified through the in-depth qualitative study, identifying each phrase with accuracy. In addition, based on these results some guidelines can be set up to help determine which strategies are needed in an individual, group, and organizational level for the purpose of effective technology appropriation. In practice, managers can focus on the changes of spirits and elevation of the structural dimension to achieve effective technology use.