• Title/Summary/Keyword: observation fusion

Search Result 141, Processing Time 0.029 seconds

A Wavelet-Domain IKONOS Satellite Image Fusion Algorithm Considering the Spectrum Range of Multispectral Images (다중분광 영상의 색상별 스펙트럼 영역을 고려한 웨이블릿 변역 IKONOS 위성영상 융합 알고리즘)

  • Lee, Young-Gun;Kuk, Jung-Gap;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.14-22
    • /
    • 2011
  • The conventional satellite image fusion methods usually add the same amount of higher frequency components extracted from the panchromatic image to all the multispectral images. However, it is noted that each of multispectral images has different amount of overlap with the panchromatic image in terms of its spectrum, and also has different intensities. Thus giving the same amount of high frequency contents to all the spectral bands does not match with this observation, which causes color distortion in the fused image. In this paper, we propose a new wavelet-domain satellite image fusion algorithm that can compensate for these differences in intensity and spectrum overlap. For the compensation of intensity differences, we first estimate the high resolution multispectral images from P, considering the relative intensity ratios. For the compensation of the amount of spectral overlap, their wavelet coefficients are appended to the conventional wavelet-domain method where the coefficients for the addition is determined by the amount of spectrum overlap. Experiments are conducted for the IKONOS satellite images whose spectrums are well known, and the results show that the proposed algorithm gives higher PSNR and correlation coefficients compared to the conventional methods.

Gender Differences in Geometry of the TIMSS 8th Grade Mathematics Based on a Cognitive Diagnostic Modeling Approach (인지진단모형을 적용한 TIMSS 8학년 수학 기하 영역의 성차 분석)

  • Yi, Hyun Sook;Ko, Ho Kyoung
    • School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.387-407
    • /
    • 2014
  • Gender differences have been given major attention in mathematics education in the context of pursuing gender equity in instructional and learning environment. It had been traditional belief that male students would outperform female students in mathematics, especially in the areas as geometry. This belief has been given doubts by cumulated empirical evidences that gender differences are gradually diminishing or even reversing its direction as time goes on. In this study, gender differences in geometry were explored using TIMSS 8th grade mathematics data administered in TIMSS 2003, 2007, and 2011, based on a cognitive diagnostic modeling(CDM) approach. Among various CDM models, the Fusion model was employed. The Fusion model has advantages over other CDM models in that it provides more detailed information about gender differences at the attribute level as well as item level and more mathematically tractable. The findings of this study show that Attribute 3(Three-dimensional Geometric Shapes) revealed statistically significant gender differences favoring male students in TIMSS 2003 and 2007, but did not show significant differences in TIMSS 2011, which provides an additional empirical evidence supporting the recent observation that gender gap is narrowing. In addition to the general trends in gender differences in geometry, this study also provided affluent information such as gender differences in attribute mastery profiles and gender differences in relative contributions of each attribute in solving a particular item. Based on the findings of the CDM approach exploring gender differences, instructional implications in geometry education are discussed.

  • PDF

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.

Human CYP1A2 Promoter Fused-Luciferase Gene Constructs Hardly Respond to Polycyclic Hydrocarbons in Transient Transfection Study in HepG2 Cells

  • Chung, Injae
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • In previous study, both constitutive expression and 3-methylcholanthrene (3MC)-mediated elevation of CYP1A2 mRNA were demonstrated in human hepatoma HepG2 cells by reverse transcription-polymerase chain reaction (RT-PCR), suggesting that HepG2 cells would be appropriate for the study of human CYP1A2 regulation(Chung and Bresnick, 1994). Further studies were conducted to determine the basis of this induction phenomenon that is observed in HepG2 cells. Since CYP1A1 gene, another polycyclic hydrocarbon(PH)-inducible gene, is regulated by PHs through their interactions via receptors with cis-elements, the 5'-flanking region of human CYP 1A2 gene was analyzed to search such responsive elements. The promoter activity of various lengths of CYP1A2 gene sequence (-3203/+58bp) was measured in transiently-transfected HepG2 cells by fusion constructs containing the CAT, hGH or luciferase genes as a reporter. This region of the CYP1A2 gene, although containing a XRE, was only weakly responsive (less than 2 fold induction) to 10 nM of TCDD or 1 $\mu$M 3 MC treatment. This small enhancement of promoter activity is inconsistent with the previous observation, i.e., 12 to 14 fold-enhanced CYP1A2 mRNA from 1 $\mu$M 3 MC treated HepG2 cells, suggesting that additional mechanisms would exist for PH-mediated induction of CYP1A2 in these cells.

  • PDF

Change in Fracture Toughness within Heat-Affected Zone of SA-Welded 9% Ni Steel (LNG 저장탱크 내조용 9% Ni강의 SAW 용접열영향부내 파괴인성 변화 평가)

  • Jang, Jae-Il;Lee, Jeong-Seok;Lee, Baek-U;Ju, Jang-Bok;Gwon, Dong-Il;Kim, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.528-536
    • /
    • 2002
  • As one step for the safety performance of LNG storage tank, the change in fracture toughness within the X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was submerged arc (SA)-welded, was investigated. Both crack initiation fracture toughness and crack arrest fracture toughness were evaluated by the crack tip opening displacement (CTOD) tests and compact crack arrest (CCA) tests. As the evaluated region approached the fusion line, each test result shorted different tendency, that is, crack initiation toughness decreased while crack arrest toughness increased. The results were discussed through the observation of the microstructural change.

A study on aerial triangulation from multi-sensor imagery

  • Lee, Young-ran;Habib, Ayman;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.400-406
    • /
    • 2002
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is performed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with frame imagery and vise versa. The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

  • PDF

Investigation of Possible Horizontal Gene Transfer from Transgenic Rice to Soil Microorganisms in Paddy Rice Field

  • Kim, Sung-Eun;Moon, Jae-Sun;Kim, Jung-Kyu;Choi, Won-Sik;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.187-192
    • /
    • 2010
  • In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in a paddy rice field, the gene flow from a bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected from the paddy rice field during June 2004 to March 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomic DNAs was not detected by PCR. Soil genomic DNAs did not show homologies on the Southern blotting data, indicating that gene transfer did not occur during the last two years in the paddy rice field. In addition, the AFLP band patterns produced by soil genomic DNAs from both transgenic and non-transgenic rice fields appeared similar to each other when analyzed by the NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms, although long-term observation may be needed.

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

On the Reflection of $20^{th}$ and Observation $21^{st}$ at Science & Technology(I) (과학기술의 20세기 회고(回顧)와 21 세기의 전망(I))

  • 최영박
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.57-61
    • /
    • 2001
  • There has never been a point in tine as the $20^{th}$ century where mankind has faced various Issues. During the past century, the human race has come to believe that the law of nature can be substituted by the development of science and technology. Scientists have worked on the atomic bomb and mainpulated the structure of the DNA. The $20^{th}$ century is a special landmark In human history. The various privileges that we are entitled to now are all the products of this century. The world population has Increased from 600 million In the 18u century to 900 million In the 19a century. This was larger due to the advance of science and technology during the 20u century. At this speed, it is anticipated that It will reach 30 billion by the end of the century. From a political perspective. there was turmoil. From an economic perspective, there were quantum leaps. The significant development of science and technology has enhanced the quality of human life. The $21^{st}$ century now awaits us. Things like memory cells and brain transplants may be realized and nuclear fusion may happen In the near future.

  • PDF