• Title/Summary/Keyword: oblique

Search Result 1,719, Processing Time 0.028 seconds

Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading

  • Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2018
  • PURPOSE. This study investigated the effects of abutment screw lengths on screw loosening and removal torque in external connection implants after oblique cyclic loading. MATERIALS AND METHODS. External connection implants were secured with abutment screws to straight abutments. The abutment-implant assemblies were classified into seven groups based on the abutment screw length, with each group consisting of five assemblies. A cyclic load of 300 N was applied at a $30^{\circ}$ angle to the loading axis until one million cycles were achieved. Removal torque values (RTVs) before and after loading, and RTV differences were evaluated. The measured values were analyzed using repeated measures of analysis of variance with the Student-Newman-Keuls multiple comparisons. RESULTS. All assemblies survived the oblique cyclic loading test without screw loosening. There was a significant decrease in the RTVs throughout the observed abutment screw lengths when the abutment-implant assemblies were loaded repeatedly (P<.001). However, the abutment screw length did not show significant difference on the RTVs before and after the experiment when the abutment screw length ranged from 1.4 to 3.8 mm (P=.647). CONCLUSION. Within the limit of this experiment, our results indicate that the abutment screw length did not significantly affect RTV differences after oblique cyclic loading when a minimum length of 1.4 mm (3.5 threads) was engaged. These findings suggest that short abutment screws may yield stable clinical outcomes comparable to long screws in terms of load resistance.

Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state

  • Chen, Li;Pan, Darong;Zhao, Qilin;Chen, Li;Chen, Liang;Xu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.137-149
    • /
    • 2021
  • In engineering design, the axial equivalent elastic modulus of laminated FRP pipe was mostly calculated by the average elastic modulus method or the classical laminated plate theory method, which are based on relatively simplified assumptions, and may be not accurate enough sometimes. A new analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipe was established based on three-dimensional stress state. By comparing the results calculated by this method with those by the above two traditional analytical methods and the finite element method, it is found that this method for the axial equivalent elastic modulus fits well not only for thin-walled pipes with orthotropic layers, but also for thick-walled pipes with arbitrary layers. Besides, the influence of the layer stacking on the axial equivalent elastic modulus was studied with this method. It is found that a proper content of circumferential layer is beneficial for improving the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers, and then can reduce its material quantity under the premise that its axial stiffness remains unchanged. Finally, the meso-mechanical mechanism of this effect was analyzed. The improving effect of circumferential layer on the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers is mainly because that, the circumferential fibers can restrain the rigid body rotations of the oblique fibers, which tend to cause the significant deformations of the pipe wall units and the relatively low axial equivalent elastic modulus of the pipe.

Comparison of Trunk Muscle Activity according to Different Strap Length of TRX (TRX 스트랩 길이에 따른 체간 근육의 활성도 비교)

  • Hong, Yeon Kyung;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • Objective: The purpose of this study was to investigate muscle activation according to the four strap lengths in the TRX plank exercise to provide scientific and accurate data on effective training methods. Method: Twenty healthy men who had at least 6 months of weight training experience and could fully adjusted plank exercise, were participate in this study (age: 25.2 ± 3.7 yrs., height: 174.2 ± 3.9 cm., weight: 71.2 ± 9 kg). To pursue the study purpose, surface electrodes were attached to trunk muscles (pectoralis major, rectus abdominis, external oblique, internal oblique, erector spinae, latissimus dorsi) and lower extramity muscles (gluteus maximus, rectus femoris, gastrocnemius), and the muscle activity was measured using 11-channel electromyography equipment. In order to verify the muscle activation according to the four strap lengths during TRX plank exercise, an one-way ANOVA with repeated measure was used with statistical significance level set at as α=.05. Results: First, there were statistically significant differences in pectoralis major, rectus abdominis, external oblique, internal oblique, and erector spinae among TRX strap lengths. Second, there were statistically significant differences in gluteus maximus, rectus femoris, and gastrocnemius among TRX strap lengths. Third, even though no statistically significant difference found in latissimus dorsi, but increased muscle activation tendency was showed as the length of the strap increased. Conclusion: From the results of this study, it may be possible that TRX exercise prevent injuries and improve lower extremity muscle as well as trunk muscles by setting appropriate length of strap.

Effect of IMU Sensor Based Trunk Stabilization Training on Muscle Activity and Thickness with Non-specific Chronic Low Back Pain (만성 허리통증 환자의 관성 센서 기반 허리 안정화 훈련이 몸통 근육 활성도와 두께에 미치는 영향)

  • Kim, Sang Hee;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • The purpose of this study was to present the IMU sensor based trunk stabilization exercise and to evaluate the changes in the muscle activity and thickness with non-specific low back pain patients (N=30). They were classified into two groups; lumbar stabilization exercise using IMU sensor (ILS), (n1=20) and general lumbar stabilization exercise (GLS), (n2=10). By comparing the difference between pre and post intervention via trunk muscle activity and muscle thickness, the significant differences were identified. Muscle activity was measured on external oblique (EO), internal oblique (IO), and multifidus (MF) by using surface electromyography (sEMG). Muslce thickness was measured on external oblique, internal oblique, transverse abdominis (TrA), and multifidus (MF) by using ultrasonography. sEMG activity was recorded at right side-bridge position. Each group performed the proposed lumbar stabilization exercise for 30 minutes a day, 5 times a week for 4 weeks. Trunk muscle activity was observed with a significant increase in the IO of ILS (p<.05) and a decrease in the MF of GLS (p<.05). Trunk muscle thickness was significantly increased in left EO and both IO of GLS (p<.05), and also significant increased right EO, both IO, both TrA, and both MF of the ILS (p<.05). In the future, a convergence approach of rehabilitation and engineering is needed to select a sensor suitable for rehabilitation purposes, study the validity and reliability of data, and produce appropriate rehabilitation contents.

Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis

  • Choi, Sung-Min;Choi, Hyunsuk;Lee, Du-Hyeong;Hong, Min-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.396-407
    • /
    • 2021
  • PURPOSE. Zirconia has exceptional biocompatibility and good mechanical properties in clinical situations. However, finite element analysis (FEA) studies on the biomechanical stability of two-piece zirconia implant systems are limited. Therefore, the aim of this study was to compare the biomechanical properties of the two-piece zirconia and titanium implants using FEA. MATERIALS AND METHODS. Two groups of finite element (FE) models, the zirconia (Zircon) and titanium (Titan) models, were generated for the exam. Oblique (175 N) and vertical (175 N) loads were applied to the FE model generated for FEA simulation, and the stress levels and distributions were investigated. RESULTS. In oblique loading, von Mises stress values were the highest in the abutment of the Zircon model. The von Mises stress values of the Titan model for the abutment screw and implant fixture were slightly higher than those of the Zircon model. Minimum principal stress in the cortical bone was higher in the Titan model than Zircon model under oblique and vertical loading. Under both vertical and oblique loads, stress concentrations in the implant components and bone occurred in the same area. Because the material itself has high stiffness and elastic modulus, the Zircon model exhibited a higher von Mises stress value in the abutments than the Titan model, but at a level lower than the fracture strength of the material. CONCLUSION. Owing to the good esthetics and stress controllability of the Zircon model, it can be considered for clinical use.

Effects of Both Abdominal Drawing-In Maneuver and Co-Contraction of Hip Adductor Muscle while Bridge Exercise on Abdominal Muscle

  • Gyeong-Hui, Park;Jin-Hwa, Lee;You-Mi, Jung;Dongyeop, Lee;Ji-Heon, Hong;Jae-Ho, Yu;Jin-Seop, Kim;Seong-Gil, Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • PURPOSE: This study examined the effect of bridge exercise-abdominal draw-in maneuver (ADIM) with hip adductor co-contraction on the TrA thickness and whether it is effective as a core stability exercise. METHODS: The subjects of this study, 33 men with no history in the past and who provided prior consent, were selected through interviews with male students of S University. The subjects performed five movements, including bridge exercise and ADIM, and performed two demonstrations and two exercises in advance. The abdominal muscles were measured using ultrasonography once in each movement, and the abdominal muscle tone was measured using a soft tissue tone measurement. RESULTS: There was a significant difference in the thickness between the TrA and Internal Oblique Muscles at various bridge positions (p < .05), and no significant difference with the External Oblique Muscle (p < .05). There was no significant difference in muscle tone in the Rectus abdominis part (p > .05), but a significant difference in the Oblique Muscle part (p < .05). The muscle tone of the Oblique Muscles by position showed a significant difference in Bridge, BHa, and BA compared to the rest position (p < .05), but no significant difference with BHaA (p > .05). CONCLUSION: The thickness of TrA could be increased through bridge exercise, and TrA could be activated properly using ADIM and may be an effective exercise for core stabilization.

The Oblique Extended Reverse First Dorsal Metacarpal Artery Perforator Flap for Coverage of the Radial-Volar Defect of the Proximal Interphalangeal Joint in the Index Finger: A Case Report

  • Jeeyoon Kim;Bommie Florence Seo;Junho Lee;Sung No Jung
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.760-763
    • /
    • 2022
  • The dorsal metacarpal artery perforator flap is a flap that rises from the hand dorsum. Owing to its reliability and versatility, this flap is used as a workhorse for finger defect. However, to cover the radial-volar defect of the proximal interphalangeal joint (PIPJ) of the index finger, a longer flap is required than before. Here, we introduce the oblique extended reverse first dorsal metacarpal artery (FDMA) perforator flap to cover the radial-volar aspect defect of the index finger. A 45-year-old man got injured to the radial-volar defect of PIPJ of the left index finger caused by thermal press machine. The wound was 2 × 1 cm in size, and the joint and bone were exposed. We used FDMA perforator from anastomosis with palmar metacarpal artery at metacarpal neck. Since the defect was extended to the volar side, the flap was elevated by oblique extension to the fourth metacarpal base level. The fascia was included to the flap, and the flap was rotated counterclockwise. Finally, PIPJ was fully covered by the flap. Donor site was primarily closed. After 12 months of operation, the flap was stable without complication and limitation of range of motion. The oblique extended reverse FDMA perforator flap is a reliable method for covering the radial-volar defect of the PIPJ of the index finger. This flap, which also has an aesthetic advantage, will be a good choice for hand surgeons who want to cover the PIPJ defect of the index finger using a nonmicrosurgical option.

Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.33-46
    • /
    • 2024
  • The present research delves into the analysis of nonlinear free and forced vibrations of porous functionally graded (FG) shallow shells reinforced with oblique stiffeners, which are embedded in a nonlinear elastic foundation (NEF) subjected to external excitation. Two distinct types of PFG shallow shells, characterized by even and uneven porosity distribution along the thickness direction, are considered in the research. In order to model the stiffeners, Lekhnitskii's smeared stiffeners technique is implemented. With the stress function and first-order shear deformation theory (FSDT), the nonlinear model of the oblique stiffened shallow shells is established. The strain-displacement relationships for the system are derived via the FSDT and utilization of the von-Kármán's geometric assumptions. To discretize the nonlinear governing equations, the Galerkin method is employed. The model such developed allows analysis of the effects of the stiffeners with various angles as desired, in addition to the quantitative investigation on the influence of the surrounding nonlinear elastic foundations. To numerically solve the problem of vibrations, the 4th-order P-T method is used, as this method, known for its enhanced accuracy and reliability, proves to be an effective choice. The validation of the present research findings includes a comprehensive comparison with outcomes documented in existing literature. Additionally, a comparative analysis of the numerical results against those obtained using the 4th Runge-Kutta method is performed. The impact of stiffeners with varying angles and material parameters on the vibration characteristics of the present system is also explored. The researchers and engineers working in this field may use the results of this study as benchmarks in their design and research for the considered shell systems.

A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method (임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구)

  • Kim, Yeon-Soo;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF

A Study for the Change of Astigmatism Axis When the Fixation Point Moved Far Distance to Near Distance (원거리에서 근거리 주시 시 난시축 변화에 대한 연구)

  • Joo, Seok-Hee;Sim, Hyun-Seog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.47-59
    • /
    • 2007
  • When the fixation point moved far distance to near distance, the change of astigmatism type in total astigmatism showed no-changed eyes: 1,020 eyes (63.8%), changed eyes: 578 eyes(36.1 %). The change of with-the-rule into oblique-astigmatism, oblique-astigmatism into with-the-rule, against-the-rule into oblique-astigmatism of change was plenty the most respectively. In corneal astigmatism was no-changed eyes: 1,164 eyes (72.8%), changed eyes: 434 eyes(27.1%). The change of with-the-rule into oblique-astigmatism, oblique-astigmatism into with-the-rule, against-the-rule into with-the-rule astigmatism was plenty the most respectively. In residual astigmatism is no-changed eyes: 935 eyes(58.5%), changed eyes: 663 eyes(41.4%). The change of with-the-rule into oblique-astigmatism, oblique-astigmatism into against-the-rule, against-the-rule into oblique-astigmatism was plenty the most respectively. When the fixation point moved far distance to near distance, the change of astigmatism axis in total astigmatism was no-changed eyes: 761 eyes(48.5%), cyclotorsioned eyes the above 10 degrees: 837 eyes(52.3%). In corneal astigmatism was no-changed eyes: 846 eyes(52.9%), cyclotorsioned eyes the above 10 degrees : 752 eyes(47%). In residual astigmatism was no-changed eyes: 614 eyes(38.4%), cyclotorsioned eyes the above 10 degrees : 984 eyes(62.5%). The magnitude of cyclotorsion of astigmatism axis in total astigmatism was Counter clockwise rotation: 31 degrees, clockwise rotation: 20 degrees. In coneal astigmatism was Counter clockwise rotation: 25 degrees, clockwise rotation: 27 degrees. In residual astigmatism was Counter clockwise rotation: 33 degrees, clockwise rotation: 35 degrees.

  • PDF