• Title/Summary/Keyword: oblique

Search Result 1,727, Processing Time 0.022 seconds

Effect of Plank Exercise Combined with Breathing and Arm Exercises on Abdominal Muscle Thickness

  • Park, Jae-Cheol;Kim, Yong-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.193-198
    • /
    • 2019
  • Purpose: This study examined the effects of plank exercise combined with breathing and arm exercises on the external oblique, internal oblique, and transverse abdominal muscle thickness. Methods: Thirty healthy adults consisting of 12 males and 18 females from K area were divided into a plank exercise combined with breathing and arm exercises group (n = 15) and a plank exercise only group (n=15). The changes in muscle thickness before the exercise and four and eight weeks after the exercise were analyzed using a two-way repeated analysis of variance (ANOVA). The significance level was set to ${\alpha}=0.05$. Post-hoc t-tests were conducted to detect the interactions between the time and groups, and the significance level was set to ${\alpha}=0.01$. Results: According to the experimental results, the external oblique abdominal muscle showed significant differences over time (p<0.05). The internal oblique abdominal muscle also showed significant differences over time and in the interactions between the time and groups (p<0.05). The transverse abdominal muscle showed significant differences over time, in the interactions between time and groups, and in the changes between the groups (p<0.05). Conclusion: The results indicated that plank exercise combined with breathing and arm movement exercises led to increases in the abdominal muscle thickness. These types of exercises may be useful in lumbar stabilization rehabilitation treatment.

Wind tunnel study on fluctuating internal pressure of open building induced by tangential flow

  • Chen, Sheng;Huang, Peng;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.105-114
    • /
    • 2021
  • This paper describes a wind tunnel test on a 1:25 scale model of TTU building with several adjustable openings in order to comprehensively study the characteristics of fluctuating internal pressures, especially the phenomenon of the increase in fluctuating internal pressures induced by tangential flow over building openings and the mechanism causing that. The effects of several factors, such as wind angle, turbulence intensity, opening location, opening size, opening shape and background porosity on the fluctuating internal pressures at oblique wind angles are also described. It has been found that there is a large increase in the fluctuating internal pressures at certain oblique wind angles (typically around 60° to 80°). These fluctuations are greater than those produced by the flow normal to the opening when the turbulence intensity is low. It is demonstrated that the internal pressure resonances induced by the external pressure fluctuations emanating from flapping shear layers on the sidewall downstream of the windward corner are responsible for the increase in the fluctuating internal pressures. Furthermore, the test results show that apart from the opening shape, all the other factors influence the fluctuating internal pressures and the internal pressure resonances at oblique wind angles to varying degrees.

The Study of Muscle Activity on Functional Reaching (기능적 팔 뻗기 시 근 활성에 관한 연구)

  • Chae, Jung-Byung
    • PNF and Movement
    • /
    • v.11 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • Purpose : This study was assessed muscle activity and onset time in trunk and upper extremity on functional reaching. Methods : The participant was 18 female(young 10, old 8). As functional reaching, we collection data by using EMG(MP150) on transverse abdominis, external oblique, erector spinae, deltoid middle and serratus anterior. Results : 1) In functional reaching, transverse abdominis, external oblique, erector spinae and deltoid middle muscle activity was augmented on old female(p>.05). Serratus anterior was augmented on young female(p>.05). 2) In functional reaching, transverse abdominis and erector spinae muscle onset time is significantly faster old female than young female(p<.05). External oblique and serratus anterior muscle onset time is faster old female than young female(p>.05). 3) As increase of age muscle activity of external oblique was more increased that we found .511 a coefficient correlation and onset time more faster on transverse abdominis and erector spinae were each -.492 and -.554 coefficient correlation. Conclusion : The muscle activity and onset time was difference in functional reaching according to ageing and task context. It is necessary concentration and attention to old female than young female. Therefore, these results suggest that importance of anticipatory postural control and selective strategy of postural control.

Comparison of the Abdominal Muscle Thickness during Abdominal Hollowing Exercise According to the Visual Feedback Method (할로잉 운동 시 시각적 피드백 방법에 따른 복근 두께에 미치는 영향 비교)

  • Kim, Ha-Rim;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.107-113
    • /
    • 2021
  • PURPOSE: Selective strengthening of the transverse abdominis muscle (TrA) during abdominal hollowing makes an important contribution to the stability and control of the spine. This study examined the effects of abdominal hollowing exercise (AHE) according to the visual feedback method on the external oblique, internal oblique, and transverse abdominis muscles. METHODS: Twenty healthy subjects were assigned randomly to an AHE with visual feedback from real-time ultrasound image (group A, n = 10), AHE with visual feedback with pressure biofeedback unit (group B, n = 10). Both groups underwent 20 min of AHE with visual feedback once daily, five days/week for two weeks. The changes in the muscle thickness of the TrA, internal oblique abdominal muscle (IO), and external oblique abdominal muscle (EO) were measured by ultrasonography. RESULTS: The thickness of TrA was changed significantly in both groups (p < .05). However, the lowest minimal detectable changes were achieved in Group A. The thickness of the IO and EO muscles in group A was changed significantly, but there were no significant changes in group B. CONCLUSION: Both visual feedback methods were effective for strengthening the TrA muscles selectively. Nevertheless, AHE with visual feedback using real-time ultrasound images may be more useful in trA muscle contraction.

Effect of One Leg Bridge Exercise with Abdominal Pressure Control on the Trunk Muscle Activation in Healthy Adults

  • Jeong, Seunghoon;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.253-258
    • /
    • 2022
  • Objective: This study aimed to determine the effect of internal abdominis pressure(normal, hollowing and bracing) on trunk muscle activity during one leg bridge exercise. Design: Cross-sectional study. Methods: Thirteen healthy adults (9 men and 4 women) were instructed to perform Internal abdominal pressure(IAP) control(Normal, Hollowing, Bracing) during one leg bridge. Electromyography (EMG) data (% Maximum Voluntary Isometric Contraction, MVIC) were recorded three times on both sides of the participant's Internal Oblique(IO), Effector Spinae(ES), and Multifidus(MF) muscles and the average value was analyzed. Results: As a result, Abdominal bracing one leg bridge (BOLB) group and Abdominal hollowing one leg bridge (HOLB) group showed significantly increased muscle activation of bilateral internal oblique, erector spinae and multifidus activation compared to the Normal one leg bridge (NOLB) group (p<0.05). Abdominal hollowing one leg bridge (HOLB) group had a significant difference in bilateral Internal oblique muscle activation in compared to the NOLB group (p<0.05). Conclusions: Bilateral internal oblique, erector spinae, and multifidus muscles activation in healthy adults at one leg bridge exercise showed greater activation at abdominal bracing. Therefore, in this study, IAP control can be used as an indicator of choice to the dysfunction with trunk muscle weakness and corrective exercise subject's situation when the goal is to activate the trunk muscles by performing one leg bridge.

Effect of Vibration Exercise Application on the Trunk Muscle Thickness in Children with Spastic Cerebral Palsy

  • Mun, Dal-Ju;Park, Jae-Chul;Oh, Hyun-Ju
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.2
    • /
    • pp.68-72
    • /
    • 2022
  • Purpose: This study examined the effect of vibration exercise on the thickness of the oblique extrinsic, oblique abdominal, and biceps muscles, which are trunk muscles, targeting children with spastic cerebral palsy. Methods: The participants in this study were 20 children (8 male and 12 female) with cerebral palsy aged 5-10 years. They were classified into two groups using a randomized allocation method, and the trunk muscle thickness was measured using an ultrasound-imaging device before and six weeks after the experiment. A paired t-test was used for the within-group changes, and an independent t-test was used for the inter-group changes. The significance level was set to α=0.05. Results: There was a significant increase in the inter-group change in the experimental group and control group in the intra-group change in the external oblique muscle and internal oblique muscle. After six weeks, there was a significant increase in the experimental group compared to the control group. Conclusion: Vibration exercise had a positive effect on the trunk muscle thickness of children with cerebral palsy. Vibration exercise produced a significant difference in the changes in the trunk muscle thickness in children with cerebral palsy compared to no vibration exercise. These results may provide basic data for future research and as a training method for strengthening the trunk muscles in clinical trials.

Effects of Angle of Foot-Bar and Knee Posture on Core Muscle Activity during Pilates Reformer High-Plank

  • Kihong Kim;Hanna Choi;Hwanjong Jeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.156-162
    • /
    • 2024
  • The purpose of this study was to investigate the muscle activity of internal oblique, rectus femoris, and multifidus according to knee posture and foot bar angle during pilates reformer high flank exercise. Twelve women in their 20s were recruited within six months of their experience as pilates instructors. The subjects performed six types of high flanks according to knee posture and foot bar angle. EMG signals of internal oblique, rectus femoris, and multifidus during exercise were measured and analyzed by integral EMG. The collected data were processed by repeated measures two-way ANOVA. In this paper it shows the following results. First, internal oblique iEMG was not significantly different according to knee posture and foot bar angle. Second, the rectus femoris had an interaction effect according to knee posture and foot bar angle. Third, there was no significant difference in multifidus according to knee posture and foot bar angle. In conclusion, according to the exercise method, the activity of the rectus femoris was the highest in the knee bending and high foot-bar angle high plank exercise, and there was no difference between the internal oblique and multifidus.

Correction Factors for Quantitative Analysis of Anchovy Eggs and Larval Stages from the Southern Waters of Korea

  • Kim, Jin-Yeong;Lo Nancy C.H.;Kim, Joo-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Correction factors based on the catch ratios of egg and larval densities in the southern waters of Korea were estimated for anchovy Engraulis japonica. This was undertaken in order to adjust ichthyoplankton data from different sampling methods, gear types and time. Samples were collected during ichthyop1ankton surveys in Korean waters from 1983 to 1994. The ratios for egg densities obtained in vertical tows with a NORPAC net (ring $\Phi$, 45 cm) compared to those obtained in oblique tows with a KOB net (ring $\Phi$, 80 cm) were 0.86 (CV = 0.65), 1.22 (CV = 0.36), and 0.93 (CV = 0.42) for early, middle, and later developmental stages, respectively. The ratios for larval densities for vertical and oblique tows varied depending on size. For yolk-sac and small larvae (< 4 mm), the ratios were 3.08 (CV = 0.45) and 1.98 (CV = 1.34), while those of 4-6 mm, 6-8 mm, and 8-10 mm larvae were 0.44 (CV = 1.31), 0.45 (CV = 1.70), and 0.56 (CV = 2.50), respectively. Ratios of day/night densities for larvae of 4-10 mm lengths were lower (0.01-0.06) in offshore catches than values obtained in coastal areas (0.440.46) and similar values (0.16-0.04) for vertical and oblique tows. Our results indicated that vertical towing is more efficient for sampling early life stages (from eggs to larvae less than 4 mm long), while oblique towing is more efficient for larvae longer than 4 mm due to depth preferences for each developmental stage (e.g., changes in egg buoyancy and vertical migration oflarvae).

Effects of Fast Treadmill Training on Spinal Alignment and Muscles Thickness

  • Kim, Won-Gi;Kim, Yong-Seong;Kim, Yong-Beom;Jeong, Ho-Jin;Kim, Jae-Woon;Cho, Woon-Su
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.175-180
    • /
    • 2017
  • Purpose: This study examined the effects of fast walking training on a treadmill on the spinal alignment and muscle thickness of normal adults. Methods: A total of 36 college students in their twenties participated in the study for eight weeks, and they were divided into the normal walking, fast walking, and speed change groups. All the groups were measured in a pre-test before training. The subjects performed exercise three times per week for six weeks. A post-test was conducted six weeks after training began, and a follow-up test was done two weeks after the training ended.Trunk and pelvic tilts were measured in Formetric 4D for the spinal alignment of the subjects. The muscle thickness was examined in the trunk with an ultrasound test. Repeated-measures ANOVA was conducted to test the main effects and interactions among the measurement variables according to time and group. Results: Significant differences were observed in the pelvic tilt according to time. There were significant differences in the external oblique, internal oblique, transverse abdominal muscle according to time. The post-test results showed significant differences in the left external oblique, internal oblique muscles between before training, six weeks into training, and two weeks after the completion of training. There were significant interactions in the left oblique muscles according to the time and group. Conclusion: These findings have some value for patient rehabilitation and clinical applications and interventions through walking training.

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.