• 제목/요약/키워드: objective parameters

검색결과 3,127건 처리시간 0.028초

다중목적 최적화기 법을 이용한 SWAT 모형 수분매개변수의 자동보정 (Auto-calibration for the SWAT Model Hydrological Parameters Using Multi-objective Optimization Method)

  • 김학관;강문성;박승우;최지용;양희정
    • 한국농공학회논문집
    • /
    • 제51권1호
    • /
    • pp.1-9
    • /
    • 2009
  • The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.

실차 계측을 이용한 차량 조향감 성능 연구 (A Study on Vehicle Steering Feel Using Objective Measurement)

  • 김정식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.161-170
    • /
    • 2007
  • As one of the major handling performances of the vehicle and tire, the steering feel is very important in the high speed where safety and refinement is a major concern for the drivers. This paper presents both subjective and objective techniques for the assessment of the steering feel including the on-center feel and steering response. For this, subjective evaluation method of the steering feel was studied at first and then objective parameters were selected by considering the process by which the steering feel is evaluated subjectively. From statistical analysis of subjective and objective data for the several vehicles and professional drivers, it was found that the subjective assessment of the steering feel could be successfully explained by means of the suggested objective parameters. Also, the main objective parameters related to the subjective assessment of the steering feel could be found.

OPTIMIZATION OF THE PARAMETERS OF FEEDWATER CONTROL SYSTEM FOR OPR1000 NUCLEAR POWER PLANTS

  • Kim, Ung-Soo;Song, In-Ho;Sohn, Jong-Joo;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.460-467
    • /
    • 2010
  • In this study, the parameters of the feedwater control system (FWCS) of the OPR1000 type nuclear power plant (NPP) are optimized by response surface methodology (RSM) in order to acquire better level control performance from the FWCS. The objective of the optimization is to minimize the steam generator (SG) water level deviation from the reference level during transients. The objective functions for this optimization are relationships between the SG level deviation and the parameters of the FWCS. However, in this case of FWCS parameter optimization, the objective functions are not available in the form of analytic equations and the responses (the SG level at plant transients) to inputs (FWCS parameters) can be evaluated by computer simulations only. Classical optimization methods cannot be used because the objective function value cannot be calculated directely. Therefore, the simulation optimization methodology is used and the RSM is adopted as the simulation optimization algorithm. Objective functions are evaluated with several typical transients in NPPs using a system simulation computer code that has been utilized for the system performance analysis of actual NPPs. The results show that the optimized parameters have better SG level control performance. The degree of the SG level deviation from the reference level during transients is minimized and consequently the control performance of the FWCS is remarkably improved.

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

실험계획법에 의한 수직샤프트 제어인자 도출을 위한 상관관계 분석 (Correlation Analysis for deriving Control Parameters in Vertical Shafts by Design of Experiments)

  • 한화택;신철용;백창인
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.895-900
    • /
    • 2008
  • It is the objective of the present study to conduct correlation analysis for deriving control parameters in vertical shafts using the results obtain by the design of experiments in the preceding research. The control parameters are categorized into objective parameters, derived parameters, condition parameters, operation parameters, and sensing parameters. The maximum pressure in the shaft should be sufficiently small in order to maintain exhaust hood performance. The pressure variations between floors should also be minimized in order to maintain uniform exhaust performance between floors and to save energy for excessive pressure drop in the shaft. The standard deviation based on -4Pa is proposed as an objective parameter to control pressure in shafts. The correlation equation has been obtained between the standard deviation and the sensing parameters of outdoor temperature and the pressure at the top of the shaft.

  • PDF

차량 안정성 평가의 객관화를 위한 과도 운동 분석 (Analysis of Transient Maneuvers for Objectifying Evaluation of Vehicle Stability)

  • 김정식;김영태;윤용산
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.167-175
    • /
    • 2006
  • Directional stability is important performance in vehicle and tire design. The current methods to analyze this is generally based on linear concept. Using the existing concept, it cannot realistically explain the subjective assessment at all because it is hard to practically represent the nonlinear behaviour of a complex vehicle system in reality. In this paper, new method to analyze directional stability is introduced. At first, directional stability of vehicle is categorized into yaw, rear axle, and roll stability. In order to objectify these items, driver perceptual parameters based on subjective assessment are used. Using the perceptual parameters, it can successfully explain the transient maneuver of vehicle and extract objective parameters for directional stability. Finally, these objective parameters are successfully validated through two handling tests, lane change and severe lane change. The correlation results show that there exists a good correlation between subjective assessment and the proposed objective parameters.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

음성장애에 대한 음향학적 중등도 지표 (The Acoustic Severity Index in the Pathologic Voice)

  • 홍기환;김현기;양윤수
    • 음성과학
    • /
    • 제10권4호
    • /
    • pp.201-219
    • /
    • 2003
  • Background: The perceptual assessment is generally performed by the voice specialist. The objective evaluation is performed in a voice laboratory. Research in voice laboratories has generated a variety of different objective tests and parameters. The perceptual evaluation is one of the most controversial topics in voice research. Review of literature reveals a wide variety of rating scales and reliability data fluctuating from study to study. Unfortunately, there is no widely accepted valid method for classifying voice disorders and assessing outcome after voice treatment. Objectives: The goals of this research were to identify important objective acoustic parameters of vocal quality, and to establish an objective and quantitative correlate of the perceived vocal quality. Materials and Methods : We evaluated the voice analyzed data from 122 dysphonic patients and 20 normal volunteers. A computerized speech lab. 4300B(CSL) was used to carry out the analysis of each voice sample. Results: Three dysphonia severity indices(DSI) were created using discriminant analysis. DSI is based on the weighted combination of the following selected set of acoustic parameters: absolute jitter(Jita in us), smoothed pitch period perturbation (sPPQ in %), amplitude perturbation quotient(APQ in %), soft phonation index(SPI), average fundamental frequency(Fo in Hz), lowest fundamental frequency(Flo in Hz), and smoothed amplitude perturbation quotient(sAPQ in %). The DSI, being the discriminating rule calculated by the logistic regression, consists of three equation based on statistically significant acoustic parameters. Three DSI were created to reflects best the degree of hoarseness as expressed by G from the GRBAS scale. The more positive this DSI is for a patient, the worse the vocal quality. The more it is negative, the better it is. The effect of sex is included implicitly in the DSI-1 and DSI-2, so that a separate DSI-1 and DSI-2 for males and females need not be used. The DSI is objective because no perceptual input is required for its calculation. Conculsion : This research demonstrates that the voice function values calculated from three different multivariate objective dysphonia severity indices are significantly associated with subjective voice assessments. These multivariate objective dysphonia severity indices may be appropriate for use in clinical trials and outcomes research on treatment effectiveness for voice disorders.

  • PDF

선형판별법에 의한 GMS 영상의 객관적 운형분류 (Objective Cloud Type Classification of Meteorological Satellite Data Using Linear Discriminant Analysis)

  • 서애숙;김금란
    • 대한원격탐사학회지
    • /
    • 제6권1호
    • /
    • pp.11-24
    • /
    • 1990
  • This is the study about the meteorological satellite cloud image classification by objective methods. For objective cloud classification, linear discriminant analysis was tried. In the linear discriminant analysis 27 cloud characteristic parameters were retrieved from GMS infrared image data. And, linear cloud classification model was developed from major parameters and cloud type coefficients. The model was applied to GMS IR image for weather forecasting operation and cloud image was classified into 5 types such as Sc, Cu, CiT, CiM and Cb. The classification results were reasonably compared with real image.

복합재 적층 보의 퍼지 다목적 최적설계 (Fuzzy multi-objective optimization of the laminated composite beam)

  • 이강희;구만회;이종호;홍영기;우호길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF