• Title/Summary/Keyword: objective cost function

Search Result 465, Processing Time 0.029 seconds

Relational matching for solving initial approximation (관계영상정합을 이용한 초기근사값 결정)

  • 조우석
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.43-59
    • /
    • 1996
  • The objective of this research is to investigate the potential of relational matching in one of the fundamental photogrammetric processes, that is initial approximation problem. The automatic relative orientation procedures of aerial stereopairs have been investigated. The fact that the existing methods suffer from approximations, distortions (geometric and radiometric), occlusions, and breaklines is the motivation to investigate relational matching which appears to be a much more general solution. An elegant way of solving the initial approximation problem by using distinct(special) relationship from relational description is suggested and experimented. As for evaluation function, the cost function was implemented. The detection of erroneous matching is incorporated as a part of proposed relational matching scheme. Experiments with real urban area images where large numbers of repetitive patterns, breaklines, and occluded areas are present prove the feasibility of implementation of the proposed relational matching scheme. The investigation of relational matching in the domain of image matching problem provides advantages and disadvantages over the existing image matching methods and shows the future area of development and implementation of relational matching in the field of digital photogrammetry.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

Robust Structural Optimization Considering the Tolerances of Design Variables (설계변수의 공차를 고려한 구조물의 강건 최적설계)

  • Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.112-123
    • /
    • 1997
  • The optimization techniques have been applied to versatile engineering problems for reducing manufacturing cost and for automatic design. The deterministic approaches or op5imization neglect the effects on uncertainties of design variables. The uncertainties include variation or perturbation such as tolerance band. The optimum may be useless when the constraints considering worst cases of design variables can not be satisfied, which results from constraint variation. The variation of design variables can also give rise to drastic change of performances. The two issues are related to constraint feasibility and insensitive performance. Robust design suggested in the present study is developed to gain an optimum insensitive to variation on design variables within feasible region. The multiobjective function is composed to the mean and the standard deviation of original objective function, while the constraints are supplemented by adding penalty term to original constraints. This method has a advantage that the second derivatives of the constraints are not required. A mathematical problem and several standard problems for structural optimization are solved to check out the usefulness of the suggested method.

An Efficient Task Assignment Algorithm for Heterogeneous Multi-Computers (이종의 다중컴퓨터에서 태스크 할당을 위한 효율적인 알고리즘)

  • Seo, Kyung-Ryong;Yeo, Jeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1151-1161
    • /
    • 1998
  • In this paper, we are considering a heterogeneous processor system in which each processor may have different performance and reliability characteristics. In other to fully utilize this diversity of processing power it is advantageous to assign the program modules of a distributed program to the processors in such a way that the execution time of the entire program is minimized. This assignment of tasks to processors to maximize performance is commonly called load balancing, since the overloaded processors can perform their own processing with the performance degradation. For the task assignment problem, we propose a new objective function which formulates this imbalancing cost. Thus the task assignment problem is to be carried out so that each module is assigned to a processor whose capabilities are most appropriate for the module, and the total cost is minimized that sum of inter-processor communication cost and execution cost and imbalance cost of the assignment. To find optimal assignment is known to be NP-hard, and thus we proposed an efficient heuristic algorithm with time complexity $O(n^2m)$ in case of m task modules and n processors.

  • PDF

The Problem of the Quality of the Predecessor Activity on the Time and Cost of the Successor Activity in the Project Schedule - Project Schedule with Resource Constraints - (프로젝트 일정에서 선행활동 품질이 후행활동의 시간과 비용에 미치는 문제 - 자원제약이 존재하는 프로젝트 일정문제 -)

  • Kim, Gab Sik;Bae, Byeong Man;Ahn, Tae Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.2
    • /
    • pp.265-286
    • /
    • 2022
  • Purpose: The time and cost of a project activity exists in a selected mode and there is a quality level for the selected mode, and the time and cost of the current activity is determined by the quality level of the preceding activity. When an activity is a predecessor activity of an activity, it is characterized as a trade-off problem in which the time and cost of the activity are determined according to the quality level of the activity. Methods: A neighbor search heuristic algorithm obtains a solution by (1) randomly determining the mode, quality level, and assignment order for each activity. (2) get a solution by improving the solution by changing the possible modes and quality levels; (3) to find a solution by improving the solution from the point where it is feasible to advance the start time. Here, Case[1] is a method to find the optimal solution value after repeating (1). Case [2] is a method for finding a solution including (1) and (2). Case [3] refers to a method for finding solutions including (1), (2), and (3). Results: It can be seen that the value of the objective function presented by the algorithm changes depending on how the model of the heuristic algorithm is designed and applied. In other words, it suggests the importance of algorithm design and proves the importance of the quality problem of activities in the project schedule. Conclusion: A study significance of the optimization algorithm and the heuristic algorithm was applied to the effect of the quality of the preceding activity on the duration and cost of itself and the succeeding activity, which was not addressed in the project schedule problem.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Design of Mixed Integer Linear Programming Model for Transportation Planning (혼합 정수 선형 계획법을 이용한 수송 계획 모델 설계)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Won, Young-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.166-174
    • /
    • 2016
  • In this paper, we developed a mixed-integer linear programming model for transportation planning of athletes in sports events. The transportation planning of athletes involves finding the lowest-cost and fastest-time plan for distributing athletes from multiple accommodation to stadium. The decision variables associate with the number of driving events, and the total transportation cost is the objective function that needs to be minimized. The proposed method uses mixed integer linear programming to solve transportation problem, thus the global optimality is guaranteed. In order to verify the effectiveness of proposed method, we performed simulation and built the sports event management service platform (SEMSP) for transportation planning.

Modeling, Control, and Optimization of Activated Sludge Processes

  • Bae, Hye-on;Kim, Bong-chul;Kim, Sung-shin;Kim, Chang-won;Kim, Sang-hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2001
  • Activated sludge processes are broadly used in the biological wastewater treatment processes. The activated sludge processes are complex systems because of the many factors such as the variation of influent flowrate and ingredients, the complexity of biological reactions, and the various operation conditions. The main motivation o this research is to develop an intelligent control strategy for activated sludge process (ASP). ASP is a complex and nonlinear dynamic system owing to the characteristic of wastewater, the change in influent flowrate, weather conditions, and so on. The mathematical model of ASP also includes the uncertainty which is a ignored or unconsidered factor from process designers. The ASP model based on Matlabⓡ/Simulinkⓡ is developed in this paper. And the model performance is examined by IWA (International Water Association) and COST (European Cooperation in the filed of Scientific and Technical Research) data. The model tests derive steady-state results of 14 days. In this paper, fuzzy logic control approach is applied to handle DO concentrations. The fuzzy logic controller includes two inputs and one output to adjust air flowrate. The objective function for the optimization, in the implemented evolutionary strategy, is formed with focusing on improving the effluent quality and reducing the operating cost.

  • PDF

LPD(Linear Parameter Dependent) System Modeling and Control of Mobile Soccer Robot

  • Kang, Jin-Shik;Rhim, Chul-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • In this paper, a new model for mobile soccer robot, a type of linear system, is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and plant be well conditioned and the outer loop is a well-known PI controller designed for tracking the reference input, is suggested. Because the plant, the soccer robot, is parameter dependent, it requires the controller to be insensitive to the parameter variation. To achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter variation is defined and design algorithms for state-feedback controllers are suggested, consisting of two matrices one of which is for general pole-placement and other for parameter insensitive. This paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a tuning procedure for the PI controller. We that the control algorithm in this paper, based on the linear system theory, is well work by simulation, and the LPD system modeling and control are more easy treatment for soccer robot.

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz;Kravanja, Stojan;Klansek, Uros
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1163-1192
    • /
    • 2016
  • This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.