• 제목/요약/키워드: objective cost function

검색결과 465건 처리시간 0.025초

Delay-Constrained Energy-Efficient Cluster-based Multi-Hop Routing in Wireless Sensor Networks

  • Huynh, Trong-Thua;Dinh-Duc, Anh-Vu;Tran, Cong-Hung
    • Journal of Communications and Networks
    • /
    • 제18권4호
    • /
    • pp.580-588
    • /
    • 2016
  • Energy efficiency is the main objective in the design of a wireless sensor network (WSN). In many applications, sensing data must be transmitted from sources to a sink in a timely manner. This paper describes an investigation of the trade-off between two objectives in WSN design: minimizing energy consumption and minimizing end-to-end delay. We first propose a new distributed clustering approach to determining the best clusterhead for each cluster by considering both energy consumption and end-to-end delay requirements. Next, we propose a new energy-cost function and a new end-to-end delay function for use in an inter-cluster routing algorithm. We present a multi-hop routing algorithm for use in disseminating sensing data from clusterheads to a sink at the minimum energy cost subject to an end-to-end delay constraint. The results of a simulation are consistent with our theoretical analysis results and show that our proposed performs much better than similar protocols in terms of energy consumption and end-to-end delay.

LP 모델에 의(依)한 Product Mix 실시사례(實施事例) (A Case Study on the Method for Finding the Product Mix by the Use of LP Model)

  • 이순요
    • 대한산업공학회지
    • /
    • 제1권1호
    • /
    • pp.41-56
    • /
    • 1975
  • In the past the pattern of business down-trend usually appeared in the form of, first, decrease in facility investment, then decrease in inventory level, followed by reduced level of consumption. But the pattern nowadays is becoming just the opposite, that is, first, consumption decrease, then inventory level increase, followed by restriction of facility investment. Also in the past, the greater effort was placed in strengthening of hardware areas through optimization and modernization of production means on the premise of sales. But lately software areas take most of the main effort to establish production mean with sales as its objective. Under these circumstances one of the real problems facing production activities today is the conflicting relationship between sales and production functions. This occurs due to differences of their view points. Then, in order to achieve maximum profit at the least cost, which is the ultimate objective of a production activity, the need arises to effectively coordinate sales demand and plant production capacity. For this purpose strong control means and function must be devised. In our case study example we illustrate a management technique for a combined planning function, of optimal coordination of product mixes utilizing a computerized linear programming model as control means of attaining maximum profit. It is hoped that this example help achieve some of corporate objectives.

  • PDF

선로사고 및 선로용량을 고려한 전력계통 최적운영에 관한 연구 (Study on the Calculation of the Optimal Power System Operation Considering Line Contingencies and Line Capacities)

  • 박영문;백영식;서보혁;신중린
    • 대한전기학회논문지
    • /
    • 제36권9호
    • /
    • pp.609-615
    • /
    • 1987
  • The optimal operation of power system is developed by alternately using real power dispatch and reactive power dispatch problem. The real power system scheduling process is formulated as an optimization problem with linear inequality constraints. A.C. loadflow method is used for the problem solution and line losses are considered. The constraints under consideration are generator power limits, load scehdling limits and line capacity limits. In solving the objective function the Dual Relaxation method is adopted. Tests indicate that the method is practical for real time application. The reactive power control problem uses the Dual Simplex Relaxation method as in the real scheduling case. Insted of minimizing the cost of power system, the objective is selected as to determine the highest possible voltage schedule. The constraints under consideration are the voltage limits at each node and the possibilities of supply or absobtion of reactive energy by generator units and the compensation facilities. Tests indicate that the method is practical for real time applications. The overall optimization methods developed in this paper proved to obtained fine results in minimizing object function compared with the method without using voltage control. And the overall voltage profiles were also improved.

  • PDF

Primal Interior Point법에 의한 선로 전력조류 제약을 고려한 경제급전 (Security Constrained Economic Dispatch Using Primal Interior Point Method)

  • 정린학;정재길;이승철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권10호
    • /
    • pp.480-488
    • /
    • 2001
  • This paper presents a technique that can obtain an optimal solution for the Security-Constrained Economic Dispatch (SCED) problems using the Interior Point Method (IPM) while taking into account of the power flow constraints. The SCED equations are formulated by using only the real power flow equations from the optimal power flow. Then an algorithm is presented that can linearize the SCED equations based on the relationships among generation real power outputs, loads, and transmission losses to obtain the optimal solutions by applying the linear programming (LP) technique. The objective function of the proposed linearization algorithm are formulated based on the fuel cost functions of the power plants. The power balance equations utilize the Incremental Transmission Loss Factor (ITLF) corresponding to the incremental generation outputs and the line constraints equations are linearized based on the Generalized Generation Distribution Factor (GGDF). Finally, the application of the Primal Interior Point Method (PIPM) for solving the optimization problem based on the proposed linearized objective function is presented. The results are compared with the Simplex Method and the promising results ard obtained.

  • PDF

An Enhanced Two-Phase Fuzzy Programming Model for Multi-Objective Supplier Selection Problem

  • Fatrias, Dicky;Shimizu, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Supplier selection is an essential task within the purchasing function of supply chain management because it provides companies with opportunities to reduce various costs and realize stable and reliable production. However, many companies find it difficult to determine which suppliers should be targeted as each of them has varying strengths and weaknesses in performance which require careful screening by the purchaser. Moreover, information required to assess suppliers is not known precisely and typically fuzzy in nature. In this paper, therefore, fuzzy multi-objective linear programming (fuzzy MOLP) is presented under fuzzy goals: cost minimization, service level maximization and purchasing risk. To solve the problem, we introduce an enhanced two-phase approach of fuzzy linear programming for the supplier selection. In formulated problem, Analytical Hierarchy Process (AHP) is used to determine the weights of criteria, and Taguchi Loss Function is employed to quantify purchasing risk. Finally, we provide a set of alternative solution which enables decision maker (DM) to select the best compromise solution based on his/her preference. Numerical experiment is provided to demonstrate our approach.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화 (Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE)

  • 권준환;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.

동적 거동을 받는 철근 콘크리트 뼈대 구조의 최적화 (Optimization of Reinforced Concrete Frames Subjected to Dynamic Loads)

  • 박문호;김상진
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.439-452
    • /
    • 1994
  • 본 논문에서는 동적하중을 받는 철근 콘크리트 뼈대구조의 경비 최적설계방법과 한계상태 설계 최적화 알고리즘을 제시하였다. 뼈대구조의 동적반응은 모드 중첩법을 이용하여 해석하였으며 뼈대구조의 각 부재를 두 개 이상의 요소로 구성하여 각 요소의 절점에서는 축방향, 횡방향 및 휨방향의 거동을 규명할 수 있도록 3 d.o.f(자유도)로 구성된 강성 매트릭스와 질량 매트릭스를 사용하였다. 철근과 콘크리트의 주 재료 경비로 유도한 목적함수는 한계 상태 설계 규정에 따라 철근 콘크리트 뼈대구조의 역학적 거동의 문제와 사용성 제약조건을 만족하면서 최적화를 이루도록 하였다. 목적함수와 제약조건은 단면의 유효깊이, 보의 폭, 인장과 압축 철근의 단면적, 기둥의 전단 철근 단면적들의 설계변수로 유도하였으며 최적화 문제를 형성하였다. 몇가지 예제를 통하여 동적거동을 고려한 철근 콘크리트 뼈대구조의 자동화된 최적 설계 알고리즘의 가능성, 타당성 및 효율성을 검토하였다.

  • PDF

저수지 취수탑의 최적설계에 관한 연구(I) -허용능력 설계법을 중심으로- (Optimum Design of the Intake Tower of Reservoir(I) - With Application of Working Stress Design Method -)

  • 김종옥;고재군
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.67-81
    • /
    • 1988
  • The purpose of the present study is to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir and to establish a solid foundation for the automatic optimum structural design combined with finite element analysis. The major design variables are the dimensions and steel areas of each member of the structures. The construction cost which is composed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of the working stress design method. The corresponding design guides including the standard specification for concrete structures have been also employed in deraving the constraint conditions. The present nonlinear optimization problem is solved by SUMT method. The reinforced concrete intake-tower is decomposed into three major substructures. The optimization is then conducted for both the whole structure and the substructures. The following conclusions can be drawn from the present study. 1. The basis of automatic optimum design of reinforced concrete cylindrical shell structures which is combined with finite element analysis was established. 2. The efficient optimization algorithms which can execute the automatic optimum desigh of reinforced concrete intake-tower based on the working stress design method were developed. 3. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optImization algorithms developed in this study seem to be efficient and stable. 4. The difference in construction cost between the optimum designs with the substructures and with the entire structure was found to be small and thus the optimum design with the substructures,rnay conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the tensile stress insteel for salb, the minimum lonitudinal steel ratio constraints for tower body and the shearing stress in concrete, tensile stress in steel and maximum eccentricityconstraints for footing, respectively. 6. The computer program develope in the present study can be effectively used even by an unexperienced designer for the optimum design of reinforced concrete intake-tower.

  • PDF

Application of DCOC for Minimum Cost Design of Reinforced Concrete T-Beams

  • 신연근;박중열;조홍동;한상훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.379-388
    • /
    • 2000
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) for design of the reinforced concrete T-beams. The cost of construction as objective function which includes the costs of concrete, reinforced steel and formwork is minimized. The design constraints include limits on the maximum deflection in a given span on bending and shear strengths and optimality criteria is given based on the well blown Kuhn-Tucker necessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. The versatility of the DCOC technique has been demonstrated by considering numerical examples which have one and five span RC T-beams.

  • PDF