• 제목/요약/키워드: object-image recognition

검색결과 798건 처리시간 0.032초

퍼지 클러스터링과 스트링 매칭을 통합한 형상 인식법 (Pattern Recognition Method Using Fuzzy Clustering and String Matching)

  • 남원우;이상조
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2711-2722
    • /
    • 1993
  • Most of the current 2-D object recognition systems are model-based. In such systems, the representation of each of a known set of objects are precompiled and stored in a database of models. Later, they are used to recognize the image of an object in each instance. In this thesis, the approach method for the 2-D object recognition is treating an object boundary as a string of structral units and utilizing string matching to analyze the scenes. To reduce string matching time, models are rebuilt by means of fuzzy c-means clustering algorithm. In this experiments, the image of objects were taken at initial position of a robot from the CCD camera, and the models are consturcted by the proposed algorithm. After that the image of an unknown object is taken by the camera at a random position, and then the unknown object is identified by a comparison between the unknown object and models. Finally, the amount of translation and rotation of object from the initial position is computed.

위치 정보 기반 객체인지에 대한 연구 (A study for object recognition based on location information)

  • 김관중
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1988-1992
    • /
    • 2013
  • 본 논문에서는 일정 지역 내에 진입한 영상 객체에 대한 객체인지 방안을 제안한다. 이 방안은 특정 지역내에 진입한 객체의 행동 패턴을 검출하고 추적하는 응용 모듈에 필요하다. 객체인지에 대한 부분은 여러 응용 모듈에서 적용될 수 있는 방안으로 단순히 영상 정보의 인식 범위에서 실제 좌표에 대한 인식으로의 확대를 위한 것이다. GPS 좌표와 영상 정보의 정합을 통하여 개체의 위치 좌표를 추출함으로서 지정 영역에서 인지된 객체의 위치를 탐색한다.

자율주행 차량 영상 기반 객체 인식 인공지능 기술 현황 (Overview of Image-based Object Recognition AI technology for Autonomous Vehicles)

  • 임헌국
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1117-1123
    • /
    • 2021
  • 객체 인식이란 하나의 특정 이미지를 입력했을 때, 주어진 이미지를 분석하여 특정한 객체(object)의 위치(location)와 종류(class)를 파악하는 것이다. 최근 객체 인식 기술이 적극적으로 접목되는 분야 중 하나는 자율주행 차량이라 할 수 있고, 본 논문에서는 자율주행 차량에서 영상 기반의 객체 인식 인공지능 기술에 대해 기술한다. 영상 기반 객체 검출 알고리즘은 최근 두 가지 방법(단일 단계 검출 방법 및 두 단계 검출 방법)으로 좁혀지고 있는데, 이를 중심으로 분석 정리하고자 한다. 두 가지 검출 방법의 장단점을 분석 제시하고, 단일 단계 검출 방법에 속하는 YOLO/SSD 알고리즘과 두 단계 검출 방법에 속하는 R-CNN/Faster R-CNN 알고리즘에 대해 분석 기술한다. 이를 통해 자율주행에 필요한 각 객체 인식 응용에 적합한 알고리즘이 선별적으로 선택되어 연구개발 되어질 수 있기를 기대한다.

Image Processing-based Object Recognition Approach for Automatic Operation of Cranes

  • Zhou, Ying;Guo, Hongling;Ma, Ling;Zhang, Zhitian
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.399-408
    • /
    • 2020
  • The construction industry is suffering from aging workers, frequent accidents, as well as low productivity. With the rapid development of information technologies in recent years, automatic construction, especially automatic cranes, is regarded as a promising solution for the above problems and attracting more and more attention. However, in practice, limited by the complexity and dynamics of construction environment, manual inspection which is time-consuming and error-prone is still the only way to recognize the search object for the operation of crane. To solve this problem, an image-processing-based automated object recognition approach is proposed in this paper, which is a fusion of Convolutional-Neutral-Network (CNN)-based and traditional object detections. The search object is firstly extracted from the background by the trained Faster R-CNN. And then through a series of image processing including Canny, Hough and Endpoints clustering analysis, the vertices of the search object can be determined to locate it in 3D space uniquely. Finally, the features (e.g., centroid coordinate, size, and color) of the search object are extracted for further recognition. The approach presented in this paper was implemented in OpenCV, and the prototype was written in Microsoft Visual C++. This proposed approach shows great potential for the automatic operation of crane. Further researches and more extensive field experiments will follow in the future.

  • PDF

이동로봇의 물체인식 기반 전역적 자기위치 추정 (Object Recognition-based Global Localization for Mobile Robots)

  • 박순용;박민용;박성기
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식 (Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor)

  • 정병수;김병기
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.53-62
    • /
    • 2006
  • 주성분 분석법을 사용한 물체 인식 기술은 영상의 조명 변화가 있을 때 인식률이 떨어지는 경향이 있다. 본 논문에서는 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터 베이스안의 물체인지 가려내는 새로운 PCA 분석방법을 사용한 물체 인식 기술을 제안하는데 그 목적이 있다. 그리고 개선된 k-nearest neighbor를 이용하여 물체 인식률을 향상 시켰다. 본 논문에서 제안된 물체 인식 알고리즘은 히스토그램 이퀄라이제이션과 미디언 필터를 이용하여 영상을 전처리하고 그것을 학습시켜서 물체 공간을 생성한다. 이때 히스토그램 이퀄라이제이션를 사용하여 히스토그램을 펼침으로써 조명 변화에 영향을 감소시키는 결과를 나았고, 이것은 기본적인 주성분 분석방법과 휘도치 정규화를 한 방법 등과 비교해 본 결과 조명 변화의 영향을 최소화하여 좋은 인식률을 유지할 수 있었다. 그리고 모델 영상내의 각각의 물체의 대표 값을 만든다. 그런 후 테스트영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 기존의 방식으로는 거리 계산오차가 많기 때문에 본 논문에서는 개선된 k-Nearest Neighbpr 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델 영상들을 인식의 단위로 이용하였다.

PCB 검사를 위한 개선된 통계적 그레이레벨 모델 (Improved Statistical Grey-Level Models for PCB Inspection)

  • 복진섭;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2013
  • Grey-level statistical models have been widely used in many applications for object location and identification. However, conventional models yield some problems in model refinement when training images are not properly aligned, and have difficulties for real-time recognition of arbitrarily rotated models. This paper presents improved grey-level statistical models that align training images using image or feature matching to overcome problems in model refinement of conventional models, and that enable real-time recognition of arbitrarily rotated objects using efficient hierarchical search methods. Edges or features extracted from a mean training image are used for accurate alignment of models in the search image. On the aligned position and orientation, fitness measure based on grey-level statistical models is computed for object recognition. It is demonstrated in various experiments in PCB inspection that proposed methods are superior to conventional methods in recognition accuracy and speed.

제품 포장라인 검사에 적용 가능한 객체 인식 영상처리 알고리즘 구현 (Realization of Image Processing Algorithms for Object Recognition Applicable to Packaging Inspection Processes)

  • 김태규;이창호;안호균;윤태성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.213-215
    • /
    • 2009
  • Using the object recognition processing on the captured images, we can inspect whether a packaging process is performed correctly in real time. So we realized the functions that acquire an image of each state of the packaging process using a camera, extract each object in the image, and inspect the packaging process using the extracted object data. In case an object shape is solid, for object search, a shape-based matching algorithm was used which searches the object utilizing the informations on the shape. In case an object shape is not solid, and Is flexible, gray-level difference of the pixels in the limited image region including the object was used to recognize the object.

  • PDF

Object Recognition using Smart Tag and Stereo Vision System on Pan-Tilt Mechanism

  • Kim, Jin-Young;Im, Chang-Jun;Lee, Sang-Won;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2379-2384
    • /
    • 2005
  • We propose a novel method for object recognition using the smart tag system with a stereo vision on a pan-tilt mechanism. We developed a smart tag which included IRED device. The smart tag is attached onto the object. We also developed a stereo vision system which pans and tilts for the object image to be the centered on each whole image view. A Stereo vision system on the pan-tilt mechanism can map the position of IRED to the robot coordinate system by using pan-tilt angles. And then, to map the size and pose of the object for the robot to coordinate the system, we used a simple model-based vision algorithm. To increase the possibility of tag-based object recognition, we implemented our approach by using as easy and simple techniques as possible.

  • PDF

정밀부품의 비접촉 자동검사기술 개발 (Development of Non-Contacting Automatic Inspection Technology of Precise Parts)

  • 이우송;한성현
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.